

willistowerswatson.com © 2018 Willis Towers Watson. All rights reserved.

Willis Towers Watson IIIIIII

Contents

1. Background

2. Self-selection by policyholders

3. Case study – BioBank & KCL

4. Pooling, trends, catastrophes

Three approaches to genetic testing

Discrimination?

Am. J. Hum. Genet. 50:476-482, 1992

Discrimination as a Consequence of Genetic Testing

Paul R. Billings,* Mel A. Kohn,† Margaret de Cuevas,† Jonathan Beckwith,‡ Joseph S. Alper, and Marvin R. Natowicz§'#'**

*Division of Genetic Medicine, Department of Medicine, California Pacific Medical Center, San Francisco; Departments of †Medicine, ‡Microbiology and Molecular Genetics, and §Pathology, Harvard Medical School, IDepartment of Chemistry, University of Massachusetts, and #Department of Pathology, Massachusetts General Hospital, Boston; and **Division of Medical Genetics, Shriver Center for Mental Retardation, Waltham, MA

"Stigmatization, and denial of services or entitlements to individuals who have a genetic diagnosis but who are asymptomatic or who will never become significantly impaired, is noted."

willistowerswatson.com

© 2018 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Insurers versus policyholders?

Case study: testing for Alzheimer's

Knowledge of family history

willistowerswatson.com

© 2018 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Level of interest across types of personal genetic information

Roberts J et al (2017) Direct-to-Consumer Genetic Testing: User Motivations, Decision Making, and Perceived Utility of Results Public Health Genomics 2017;20:36–45

Further research

Material impact on insurer, average CI claim overall increase of 26% and concomitant increase in CI premium rates

Valuation strain (pricing loss) for the industry from those who test positive in a single year (based on the assumptions) would be about 12% of the total death claims for the year. There may be a concomitant increase in term insurance premium rates

DNA, chromosomes and single nucleotide polymorphisms (SNPs)

willistowerswatson.com

Genome wide association studies ('GWASes')

PRS: Polygenic Risk Scores

Potential for anti-selection in breast cancer

In Canada and the UK, about 1 in 8 women will be diagnosed with breast cancer in their

Prevalence of BRCA1/2 mutation in the general population: 0.2 to 0.3%

> High └penetrance

Only 5-10% of breast cancer cancers is attributed to mutations in high- or moderate-penetrant genes (including *BRCA1*, *BRCA2*, *TP53*, *PTEN*, *STK11*, *CDH1*, *CHEK2*, *PALB2*, *ATM*, *NBN* and *BARD1*)

Roughly only 10% of women with a family history of breast cancer test positive for a hereditary cancer mutation... what explains the 'missing genetic component'?

Origins of research

Why UK Biobank?

Breadth and Depth

Data on UK Biobank participants

https://www.ebi.ac.uk/about/news/feature-story/biobanks-genetic-datademand. Accessed 12 May 2018 Long-term follow up of multiple outcomes

Genotyping on all 500k participants

Other insights from UK BioBank

	1.6	1 M 1/2						
	I OLIFOOIT	bow book	DOOD OF OF	IN UD O TO OU	thor in t	LOUR DOL	loobol	
			and the set of the set					

(Include those who usually live in the house such as students living away from home during term, partners in the armed forces or professions such as pilots)

 None One Two Three Four or more 	

Other insights from UK BioBank (2)

'Underwriting' UKB participants and predicting disease incidence

PRS to predict incidence of breast cancer (RGA-KCL study results)

Total Participants: 199,517 Total Participants: 143,958 Number of breast cancers: 3,882 (1.95%) Number of breast cancers: 2,684 (1.86%) Ω Full cohort: Standard cohort: Percentile Percentile Hazard ratio (95% CI) Hazard ratio (95% CI) Decreased risk Decreased risk 0-1 0.36 (0.21 - 0.63) 0-1 0.41 (0.22 - 0.76) 1-5 0.56 (0.44 - 0.7) 1-5 0.56 (0.42 - 0.74) 5-10 0.56 (0.46 - 0.69) 5-10 0.6 (0.47 - 0.77) 0.71 (0.59 - 0.84) 0.7 (0.6 - 0.8) 10-20 10-20 20-40 0.84 (0.76 - 0.94) 20-40 0.84 (0.74 - 0.95) 1 (reference group) 1 (reference group) 40-60 40-60 1.21 (1.09 - 1.33) 1.22 (1.09 - 1.38) 60-80 60-80 80-90 1.4 (1.25 - 1.57) 80-90 1.41 (1.23 - 1.61) 1.86 (1.63 - 2.12) 1.87 (1.6 - 2.18) 90-95 90-95 1.97 (1.72 - 2.26) 1.96 (1.66-2.31) 95-99 95-99 99-100 2.51 (2.02 - 3.13) 99-100 2.61 (2.02 - 3.38) Increased risk Increased risk

Predicting impact of PRSs is still early

- Genetic loci associated with disease will continue to be found and could confer additional predictive power
- Correlations with other health and lifestyle factors could be more significant than high penetrance genes
- Correlations between PRS for different conditions
- Risk of developing a disease may be correlated with severity of disease
- Application of PRS to non-Caucasian populations
- Preventative or mitigating actions, such as:
 - Screening programs based on PRS may limit mortality impact
 - Impact of preventative lifestyle actions unknown
 - Pharmacogenomics, precision medicine etc.

Research into anti-selection risk from genetics: Assumptions

Potential for anti-selection – example in breast cancer (*Central of three scenarios*)

Percentile	% in general population	Hazard ratio for breast cancer	Probability of purchasing insurance *	% in new risk pool
0-1	1%	0.41	0.71x	0.7%
1-5	4%	0.56	0.78x	3.0%
5-10	5%	0.6	0.80x	3.8%
10-20	10%	0.71	0.86x	8.2%
20-40	20%	0.84	0.92x	17.7%
40-60	20%	1	1x	19.2%
60-80	20%	1.22	1.11x	21.4%
80-90	10%	1.41	1.21x	11.6%
90-95	5%	1.87	1.44x	6.9%
95-99	4%	1.96	1.48x	5.7%
99-100	1%	2.61	1.81x	1.7%

Further information

Peter Banthorpe, Senior Vice President and Head, Global Research and Data Analytics

https://www.rgare.com/knowledge-center/media/articles/the-risk-of-anti-selection-in-protection-business-from-advances-in-statistical-genetics

https://www.actuarial-center.org/the-importance-of-genetics-on-mortality-and-morbidityrisk-in-the-presence-of_6dcc60cd6.html

https://www.cass.city.ac.uk/__data/assets/powerpoint_doc/0009/437463/BANTHORPE-Peter.pptx

willistowerswatson.com

Pooling, trends, catastrophes

Pooling – to what extent do we want to pool varying risks?

Trends

What are the likely impacts of personalised medicine on mortality trends?

- Negative contribution to trend from gradual impact of anti-selection
- Positive contribution from improving care following personalised treatment
 - Impact currently still relatively minor
 - Medium-term impact limited to a range of cancers?
 - Longer-term impact: ?
- Positive contribution from improving 'self care' following personal test results?
 - Likely to vary strongly by socio-economic class
- Overall impact will depend on culture, attitudes and health provision in different countries

What are the likely impacts of personalised medicine on <u>CI</u> trends?

- Negative trend from gradual impact of antiselection
- Negative trend from earlier / more reliable claim diagnostics
 - ... but earlier screening (from better diagnosis) could reduce emergence 'full' condition

'Negative' = negative improvements, ie a worsening of the claims impact

Catastrophes

Life insurers need to consider capital requirements in the event of a 1-in-200 mortality catastrophe

- Generally relate to heavy pandemic and/or terrorist (or similar) incident
- Availability of technology to 'make your own genes' could allow feasible scenario of easily bio-engineered super-pathogen?
 - Probability? fits 1-in-200
 - Impact? much worse than Spanish flu

Willis Towers Watson