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Abstract

A model for the claim number process is considered. The claim
number process is assumed to be a weighed Poisson process with

a three parameter gamma distfibution as the structure function.
Fitting of this model on several data encountered in the'iifEPf
ature is considered, and the model is compared with the two
parameter gamma model giving the negative binomial distribution.

Scme credibility theory formulae are also presented.

1. Introduction

In this note we consider a model for the claim number process.
Our model is a weighed Poisson process with three parameter
gamma distribution as a structure function. This is equivalent
to the fact that the claim number process consists of two
independent_component processes, a Poisson process and a neg-
ative binomial process. The Poisson component may be théﬁghf
as the common part for all risks, and the negative binomial
component as the individual contribution of a.particulaf

risk. This means that we can write the' number of claims in

time t, N_ as the sum of two components,

t

Ne = Nyp + Nop

where N1t has a Poisson distribution with the expected







value Yt, say, and N2t has the negative binomial distribution.
We consider here the fitting of cur model on real data using
the method of moments and the maximum likelihood estimation.
Unfortunately the maximum likelihocd estimators for the |
parameters cannot be obtained in a closed form. Hence, they
are caléulated via maximization of the likelihood function
numerically.

We test the hypothesis Hozy':“D against the one-sided al-
ternative H1:'Y>O. This tests the existence of the Poisson

compenent in the model.

We derive also some credibility thecry formulae for our
medel. The corresponding formulae for the two parameter
model can be found in Seal .(1969). The flavoﬁr cur model
gives to credibility consideraticns is the fact that even
the best claim history does not lead to zero premium in
the limit. This is due to the existence of the background

intensity which gives rise to the Poisson process.

2. Definition of the model
We assume that the claim number process Nt’ t >0, is a
weighed Poisson process, i.e., if the claim intensity is A,

then the conditional process (Ntl A) is a Poisson process.

t>0
If the intensity p has the distribution function U, then
® (At)H e-kt

p,(t) = P(N_=n) = g . QU . 1)
Q . o '







We now assume that

Wn) = et g A8 gy (2)
when A > vy, and zero otherwise, with positive o,8 and v.
This amounts to the fact_that A has the three parémetér
gamma distribution I'(a,8,Y), see Jchnson and Kotz (1870).
From (2) it follows that the intensity has a strictly pos-
itive lower 5ound Y. By substituting (2) into (1) we
obtain

P(k+a) ( B 5% ¢ + )k (Yt)n_k e-Yt (2)

T+ T4 (n-k)!

n
p.(t) = %
n k=0 T(a)k!

From this or directly from (2) we may observe that the
intensity A can be written as the sum A =y + R, where v is
a positive real number, and A has the usual two parameter gam-
ma distribution F(a,B). The interpretation of these components
is
Y G background Poisson intensity which is common for
all risks
K = additicnal invidual intensity that varies from one
risk to another.
With this interpretation we can assume that the process Nt
itself consists of two mutually independent component

processes N1t andg N2t’ where N is a Poisson process with

1t

intensity y and N is a weighed Poisson process whose in-

2t
tensity K has the distibution r(g,gJ). Then

Ny = Ny o+ N, | ()

where N, _ a Po(yt) and Ny n NB(g, ) . Here =+ stands

_B.
1t t+g






we obtain

B o= 2(s?- x)/(xy - 352+ 2%)
a = (s2- X)B2 | (63
Yy = X - a/8.

Necessary and sufficient conditions for the feasibility are

5% % X, Xy > 28%/x - g2

The first condition impliies that the variance has to be lar-
ger than the expected value. This is due to the presence of
the negative binomial part in the model. The Poissson part
gives egual variance and expeéted value. The second condition
means that the distribution has larger third moment than a NB-

distributicon with the same first two moments.

Method 2. Because the use of the third moment in estimation
may give undue weight on the tail we consider here a variant
‘of the method of moments. The idea is to fit x, s? and P>

the relative frequency of the zero class.Then we have to sclve
the system of equations

a/B + ¥ = X

a/R + y+a/B2= s? | (7)
B yo_=y _
7(W = T P

This leads to the sclution

a = (x -y)¥/(s? - X) , B=(x - v)/(s% - %), (8)
with y being the solution of the equation

(x = y)2 1n X =y (9)
s? - x s2- v

Y = - lnpO +

- The solution given in (8) and (3) is feasible if ; lies in
the closed interval [0,x]. We consider next the necessary and
sufficient conditions for the existence of a unique solution

of (8) in this interval. For this purpose, denote






k - 3. j-i
= T n.{aln_T%E - v + 1n( & Fi+a) Y T )}
j=0 120 T(a) 11(j-1)'(1+8)
. ] .
= rlaln.?%g - ny + I =n.ln (Yj z Tlita) ! I)’
- i=0 120 Tla)y L11¢3-1i)1(y(1+8))

where n:no+...+nk 1s the total number of observed risks. To
facilitate the maximization we denote n=y(1+B8), and substi-

tute (n-v)/y for 8 in L. Then the new likelihocod function is

n-y K J T(i+a)

ﬁ(a,n,y) = na]J1—ﬁ~ - ny + nx 1a(y) + £ n.ln( I

320 1 i=0 11(§-1)1TCa)nt

If we put the derivative with respect to y egual to zero we

get the equation
-no/(n=-y) = n + nx/y = 0, S (10)

or eguivalently

X = Y+ a/B.
In order to handle the partial derivatives with respect *o
o and n we denote

T(i+a) 1 _
0 T(a) i!(i-i)int

3]
n .

.(a,n)
Wj s N :
for which 5 i
z I (a+m=1)

3. 1 + 3 T(ita) 1=1 mI
- d - T ,
a3 © G- L TRy i1(5-1)1n*
and .
D . 3 IGe+a) SO N
M "3 531 () it(5-i)intt]

With the help of these we have

L(a,n,y) = na]11ﬂ%l - ny + nx ln(y) +

it F

n.ln(w.{a,nl)),
] J

).
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| 2 ]
£(r) =y + Inp +—2l‘f.}_1n<1+f ).
5°- X X -y

The solution of (9) is then equivalent to the solution of
the equation f(y) = 0.
Now we have

£(0)

1]

Inp_ + (x*/(s?- %)) ln (s2/%)
“and

£(x)

X + lnpo.

We also have

- _ 2 _ 2_ = -1
Frey) =1 - EE D) g0 22Xy (g 48in %y
s? - x X -y X - Y

If we denote y = (s® - X)/(x - ¥) , h(y) = yf'(y), then

h(y) = (2y + y2)/(1 + y) = 21n{1 + y).
From this 1t is easy to see that h(0) = 0 and h'(y)'a g,
when y 2 0. But this means that , if s? 3 X, then f'(y) 3 0
for 0 < ; < X, Bécause the condition s? > X is also neces-

sary for a > 0, we have that the conditions

53X, -x < p_ < (-x*/(s?-x)) In( s2/%x) .

are necessary and sufficient for the existence of a unique

feasible solution. These mean that the zero class probability
must lie between those of a Poisson distribution and a negative
.binomial distribution with due first moments.

Method 3. Let us assume that we have the data no,n1,...,nk,
where nj is the number of risks having had ] claims in unit
time. The maximum likelihood method gives us the estimator

(&,3,7) which maximizes the likelihood function

k

Lla,Bsy) = 1In 1
3=0

(P ( ) ) j - | | P ( “‘
L] - . 1






and
ST s nalt-v T o7 }5 nom w. (a,n) (ws (ayn)) !
an - 2g Jon 3077 it
] (14)
I ¢ o d - -1
3a L =nln((n=y)/n) + E njga-wj(a,n)(wj(a,n))

Because of (10) our three-dimensional maximization problem
has been reduced to a two-dimensional one. This problem may
be solved using an optimization method, which makes use of

the gradient given in (11).

4. Testing the model
After having fitted the model using the maximum likelihood
method we can naturally test the goodness of fit of the

model using a y2-test.

If we have a good fit, there lies' the question whether ¥y
differs from zero significantly. The case Y = O corresponds
to the pure negative binomial distribution, i.e., the Poisson
beackground is absent. We need to test the null hypothesis
H oty =0 against the alternative H;:y>0. Under the null
hypothesis the number of claims has the negative binomial
distribution. This distribution is fitted to the data using
the maximum likelihood method. Description of this method
for negative binomial distribution can be found for example
in Johnéon and Kotz (186¢). This gives us the estimator
(a,B). Ff we denote by ﬁi and 51 the class i probabilities

given by the estimators (a,B8,¥) and (&,é), respectively, then

we c¢an form the test variable






Y = =2 (12)

[N e

. ni111(pi/pi).

i
For the conditions under which Y has the x?(1)-distribution .
as 1its asymptotic distfibution we refer to Rac (1973). The
other conditions given by Rao are met by our distribution
but the positive-definiteness of the information matrix.
The verification of this fact seems to be a hopeless task in
general. We have shown that the determinant of the information
matrix becomes zero when o and 8 tend to infinity with their
ratio constant. This means that the results of our tests
become unreliable as o or R becomes large. We have verified

numerically that the information matrix is positive definite

when g = 1 and g8 is finite.

5. Credibility
We now look at what do some credibility theory formulae look

like for our model. We denote

(s1t) = P(Nt+s-‘Nt = 11 N_ = n),

plEn
the conditional probability of 1 claims in time s after
having had n claims in time t. Now we have

(At Eyn syl

(Sit) = 't_+§-

plln n T+s (t'l'S)/pn(t),

Pil+n
see Seal (1969) p. 27. For example the probability of no
claims after having had no claims in time t is

(s1t) = (LI _y0 7VS

1:)olo B+t+s

The conditional expectation of the intensity A after n

claims in time t is
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n+1 pn+1(t)
t pn(t)

n+1
T T(k+a)(y(R+t))
k=0
n
b

E{AIn,t)

nH_k/(nﬂ--k)'.

_ n+1
t

Fik+a) (Y(B+e)) X/ (nokyt

k=0 .

Further the conditional density of A after n claims in time +t

can after some manipulation be written as

_ B+ G-y¥ T BHE) (G yn p (1)
pn(t)

dUCAIn,t) dt,

ra) n'
for A > y. The first factor here is the density function of
the distribution T'(a,B+t,y). Especially after claim-free
time t we have |

(A th = 0)~ T'(a, B+t,y)

s¢ that
E(Nt+S —Nt | Nt = 0) = (a/(B+t) + ¥) s
' - _ 2 2
Var(Nt+S - Nt i Nt = 0) = as®/(a+t)? + (a/(B+t) + ¥)s .

Further, if we let t tend to infinity, then

E(Nt+S - Nt I Nt =0) > vs

— N =
Var(Nt+S + | Nt 0) -+ vs.

Equivalently we can write that
ECA th = 0) = o/ (B+t) + v = v
Var(4 | N_ = 0) = g4/(g+t)2 = 0,

as t4eo. This means that (A]Nt:O) + vy in probability, so that
a claimless risk will approach a risk with pure Poisson claim

process. This means also that the credibility premium would
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converge 1o y and not to zero. Similar to the preceding re-
sults, varicus results concerning the bonus class systems

can be presented in & computable form in our case.

5, Fitting the model on real data

In this section we consider the fitting of our model on some
data that can be found in the actuarial literature. We cal-
culate the maximum likelihood estimates for o and 8 in the
case when v = 0, and for «,8 and Y in the general case. To
get started we solve v from (9) using Y = x/2 as the first
guess. Then we use this v together with o and B obtaihed_
from (8) as the initial guess for the calculation of the
maximum likelihood estimation. These estimates were computed
using the Davidon-Fletcher-Powell method, see Raoc (1978).
The computations were performed by a SM-4 computer. Also
(12) was computed in order to perform the likelihoed ratio
test. |

Our first fit is on the Trdbliger (1961) data. Trédbliger fit-
ted on his data a model in which the risks were classified
into two classes "the good" and "the bad". The fit was good
with x2(1) = 0.44. These data give x = 0.14421976,

§2 = 0.1638699 and Py *© 0.872948. If the pegative binomial
distribution is fitted, then & = 1.117895, B = 7.751332,
and if our model is fitfed, then a = 0.2766328, R =73.7597937
and ¥ = 0.07064318. The frequencies of different classes for
our model énd the negative binomial distribution together

with the observed frequencies are given in the following

table
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Table 1.
No., of claims observed | our model NB
0 20592 20581.87 20586 .76
1 2651 2651.45 2631.,03
2 297 296,42 313.37
3 L1 41 .12 37.81
L 7 6.70 h.us
5 0 1.18 0.52
b 1 0.21 0.06
If the three last classes and the ¢lass " 37" are

joined together, the x2(1)—valué for goodness of fit test
of our model is 0.0C042. This extremely low value is due to
the fact that three parameters were fitted. The likelihood
ratio test has néw the x?(1)-value 3.93 which exceeds the
critical value 3.84 at the 0.95-level. hence, the hypothesis
Ho: Yy = 0 is rejected. We now have the estimate 0.071 for
the background intensity. This may be compared with the mean
intensity x = 0.14% and the "good" intensity 0.109 in
Trdbliger”™s model. The estimated background intensity is

49% of the estimated mean intensity and 66% of
the estimated "good" value.
We look also another example a little closer. Thyrion (1960)
fitted also a three-parameter model of welghed Poisson type.
' This model has a reasonable fit. The estimation was not
maximum likelihood, and so no y2-test is available. The
estimated parameters are X = 0.2143537, s2 = 0.2889314 and
P, = 0.82866505. The estimated negative binomial parameters

are @& = 0.7015122 and B = 3.2726858. The estimated parameters

of our model are a = 0.2006137, B = 1.6665135 and
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,$ = 0.09397439. The calculated and observed frequencies are

collected in +the following table

Table 2.
No. of claims cbserved our model NB
0 7840 7837.40 7847 .01
1 1317 1326.158 1288 .36
2 239 222.76 256.53
3 4z 57.68 54.07
L 14 15.08 11.71
5 4 4L .66 2.58
6 b 1.50 0.57
7 1 0.50 0.13
If the three last classes and the class > 8" are

joined together , the goodness of fit test for our model

has the x*2) value 4.12 . This 1s below the 90%-value L4.51

S0 that our model cannot be rejected. The likelihcod ratio
test has the x?{1)-value 9.53, which exceeds even the 0.935-
level. The hypothesis HO:‘Y: 0 isrthen rejected. The esti=-
mator for the background intensity vy =0.09% is about Lu% of
the estimafed mean intensity x.

We have considered several éther data from traffic insurance.
We shall review them here only briefly to save space. Lemaire
(1873) gives data on which already the negative binomial
distribution fits well. Hence the hypothesis Ho: Y= 0 is not
rejected. In spite of this the maximum likelihood estimator
for the background intensity is 40% of the estimated mean
intensity x. Delaporte (1362) gives data, which has the tail
shorter than the fitted nebative binomial distribution has.

Hence, our model leads to negative value for the background
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intensity, and cannot be fitted on this data. Pesconen (1962)
has data on which already the negative binomial model fits
well, and the hypothesis of zero background intensity is

not rejected. Again, however, the estimated backgrcund in-
tensity is a large percentage, 60, of the estimated mean in-
tensity x. Muff (1972) gives two sets of data, A and B. The
data A lead +to a similar situation as that of Delaporte,
and the data B similar to those of Pesonen and Lemaire. Fi-
nally Blhlmann give data for which the null hypothesis of
zero background intensity is rejected with a high y?-value.
On the other hand ¥ is as low as 0.37 x .

As a conclusion we must admit that the model presented here
is not a general solution to the prcblem of determining the
claim number distribution. If the data have a long tail then
this model is worth considering. If the tail is short then
the bad fit of negative binomial distribufion cannot be cor-
rected using this model with positive ¥ . However, the scarce
knowledge we have of fitting this model indicates that in
most of the cases the background intensity is somewhere
around fhe half of the mean, approximately between 0.Ux and
0.6x%. Additionally this model can be used to build up a
bonus malus system with some definite Iower boundary for

the premium.

7. Additional topics

Several years' data Let the same portfolio be cbserved during

a period of several years. Let us assume that our model is

the true one. Let the A Bt and'rtbe the parameters a, B8 and
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¥Y,1f t 1s selected to be the time unit. Equating the first
three moments for the number of claims in time + calculated
using time units 1 and t, respectively, we obtain

Bt = 81/t, Yo oF ty1

This means that if our model is the true one, then the ob-
served values of Oy tBt anft yt/t should be fairly constant
during the observation period.

Two portfolios Let us join two portfolios which have the

distributicn (3) for the number of claims with parameters
¢, B, and yi,i=1,2, respectively. Let the sizes of the
portfolios be in ratio p/(1-p). let, further,

', 1f the risk is from the'portfolié 1
X_‘{O, if the risk is from the pertfolio 2.

Then for a randomly chosen risk we have

Nt = N1tX + N2t(1 - x) = (N11tx + N21t(1 - X J)) +
X Npp (1 - 00 = N+ W,
where Nijt is the number of claims in time t in portfolio i

due to the component j as in {(4). Then N, is divided into

twWo components the first of which is a mixture of two Poisson
distributions and the second a mixture of two negative bino-
mial distributions. Hence, the combined portfolio does not
have any more the claim number distribution (3). In spite

of this we tried fhis model for two composite data. We pool-
ed Bdhlmann's data with Tr&bliger's data »L, and then with
Lemaire's data,lI. The fit was excellent in both cases, and

the null hypothesis of zerc background intensity was rejected







- 16 =

with great significance. The interesting feature is that
the parameters obtained are close to those of Blihimann's,
and are not near the linear combinations of the criginal

parameters. This can be seen in the following table

Table 3.
data x 5? a B Y /%
Biihnlmann  .15514  .17932 .4Q015 U4.068 .05679 G§.37
Trébliger .14422 ,16387 .27663 3.760 .07084  0..49
mixture I .15334% .17679 .37838 L4.018 .05918  0.39
Lemaire .10108  .10745  .58881 9.641 .04001  0.40
mixture II .12965 .14615 .31966 4.405 .05708  0.ui

For example the linear combinaison of the Yy-parameters in
the Buhlmann-Lemaire case would give 0.04887 against the

"obtained 0.05708.

As a last example we joined together the data of Lemaire,
Thyrion, Pescnen, Trdbliger and Bihlmann and considered how
our model fits with these heterogenecus data. The fitted
NB-distribution had a x2?(3)-value 61.14; which means pocer fit.
When our model was fitted, the y2(2)-value was 5.18, which
means a moderate fit. The log likelihood was 47.55, which

is a highly significant x?(1)-value. The estimated background
intensity was ¥ = 0.0654328, which is 49% of the estimated
mean.

More detailed exposition of methods and results of +this paper

is found in a technical report Ruohonen (1983).
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