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 ABSTRACT 

This paper considers different aspects of conversion from conventional life 

insurance policies into universal life policies. 

 

Finding formulas for conventional policies on an annual basis is typically quite 

straightforward, but this paper analyses and includes more complicated cases 

also.  

 

Monthly mortalities are also discussed in this paper. This paper introduces a 

concept "discount factor preserving method" which ensures the compatibility 

of old and new formulas. Also some other methods are derived to solve other 

challenges. 

 

The main focus of this paper is conversion. The results, especially when 

viewed from or analyzed on a monthly basis, are different than those referred 

to in actuarial literature. 

 

This paper also examines the accounting viewpoint, where calculations are 

performed at the end of a calendar month and not on full months or years after 

the effective date of the policy.  

 

This paper suggests that the leadership and management of the insurance 

undertaking should consider the possibility of changing the technical bases of 

their products in specific cases in order to create systems that are more cost 

effective and policies that can be managed more easily. 
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1 INTRODUCTION 

1.1 Purpose of this document 

This paper describes conventional model conversion into universal life models. 

Some approximation models are also considered in this paper. 

 

I have chosen to use the terms 

- conventional model for the prospective model where the 

liability is the present value of the future net outgoing cash 

flows 1 

- universal life model for the retrospective model where the 

liability is calculated as the accumulation of account entries 

over the years up to the balance sheet date2 

 

This paper concentrates on modeling the reserve calculation using universal 

life models.3 

 

1.2 Examples and industry practices  

 

The examples are mostly based on industry practices that I have seen used in 

Finland and Estonia.  

 

In order to preserve the confidentiality of the undertakings the models 

described here are generalized models and are not exact examples used by any 

particular undertaking. For instance the loading structures and the parameter 

values differ slightly from the practice. I also describe some alternative 

solutions and do not describe which model some undertakings have used. If I 

propose the use of some alternative, this proposal should be taken as my 

personal view only. 

                                                 
1 I have chosen to use term "conventional model" instead of "traditional model" as it has been called e.g. by 

Angus S. MacDonald. (See MacDonald p. 980) and Black et al. (See Black et al, p. 113) 
2 The universal life model can sometimes also been called the "recursive method "(See e.g. Gerber, p. 68 and 

Savolainen). However, recursive methods are used also in other contexts. Using the name "recursive method" is 

justified especially when the conventional formulas are expressed in universal life formulas.  
3 By "reserve" in this document I mean the policy savings and not "liabilities" because in IFRS the liabilities may 

differ from the reserve and at least in phase I the savings may be divided into the financial liabilities and 

insurance liabilities portions. In general actuarial literature, typically the term "reserve" has been used. 
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1.3 Used notation  

The notations used in this document are mainly based on the International 

Actuarial Notation, published in the Encyclopedia of Actuarial Science.4 

However, in this document I do not always differentiate between discrete and 

continuous models because sometimes the same formulas may be used for both 

models. The difference is only specifically cited in situations where there is 

some relevant difference between the models. 

  

About the notation of ages see the footnote 15. 

 

The terminology and notations used may differ from one reference to another, 

but when cited in this document, uniform terminology and symbols are used. 

                                                 
4 See Wolthuis, pp. 927 – 931. See also chapter 5. 
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2 MOTIVATION FOR THE PAPER 

2.1 New requirements for the insurance undertakings 

New requirements laid down for the insurance undertakings do not require 

universal life models. However, using universal life models may help in the 

process of fulfilling requirements. 

 

IFRS 4 requires an insurance undertaking for example 

- to unbundle deposit components and insurance components of some 

insurance contracts5 

- to carry out a liability adequacy test6 
- to perform sensitivity analysis7 

 

In the solvency II framework8 it is likely that an insurance undertaking also 

- may develop their own internal models to assess their risks and solvency 

- may and sometimes shall have to perform specific tests based on their 

insurance portfolio 

 

In Principles for the Conduct of Insurance Business IAIS has stated about the 

disclosure principles that the insurance undertaking 

- shall have to inform the policyholder of costs and associated charges9 

 

As a result of these requirements insurance undertakings should have more 

detailed information about their portfolios. This paper does not discuss the 

simulation of future cash flows but concentrates on modeling the reserve 

calculation using universal life models.10 

 

Some approximation methods can also be used, like those described in the 

guidelines given by the Ministry of Social and Health Affairs.11 However, those 

tools which are based on the average numbers of the accounting period were 

developed during times when it was not possible to use effective computers to 

manage large quantities of data. At present more accurate methods can be used. 

                                                 
5 See IFRS 4, 10 – 12. 
6 Ibid 14 (b), 15 – 19. 
7 Ibid 39 (c)(i) and IFRS 4 Guidance, IG 52 – 54. 
8 See "Solvency II Proposal" art. 34 and subsection 3. 

See European Commission, Financial Institutions, point 5, p. 3. 
9 See about this transparency requirement International Association of Insurance Supervisors, 12.3, p. 7. 
10 See about modeling e.g. Koller and IAA. 
11 See Koskinen et al. and  Sosiaali- ja terveysministeriö 
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2.2 Efficiency of the insurance undertaking processes 

It is well documented that old insurance undertakings have applied many 

techniques during their product generations and life cycles. It is also well 

known that the new ones are universal life -type policies. This means that the 

products in conventional techniques are often run-off portfolios that will still 

be in force for many years to come. 

 

It is inevitable that sooner or later, the leadership of insurance undertakings 

will have to ask themselves whether it is commercially viable or indeed is it 

even wise to maintain these old techniques because of the financial 

implications involved of running separate computer systems, improving and 

increasing their efficiency and then needing and also requiring and employing 

several interfaces to consolidate the data. 

 

One option is to convert the policies with conventional techniques to policies 

with universal life techniques. Then, if the software is parameter driven, 

sometimes the undertaking may be able to manage several products with the 

same software. 

2.3 Lack of knowledge of the conversion 

Over the years in discussion with actuaries in insurance undertakings I have 

realized that people are often not familiar with the conversion formulas. One 

reason may be that the literature does not directly derive the formulas from the 

traditionally used commutation numbers. Actuaries want to verify that the 

formulas work in their products. This paper should assist in the verification 

process. 

 

The formulas in this paper have been tested in practice by calculating the same 

numerical input data using both the conventional model and the universal life 

model. 

 

Typically the formulas are written for a sum insured equal to 1, which entails 

that the reserve has to be multiplied by the sum insured. However, in practice 

the formulas are calculated based on the actual sum insured, and this 

convention is therefore used in this paper. 
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3 STRUCTURE OF THE DOCUMENT 

The paper also develops a step by step approach to the conversion rules: 

 

1) Introducing and noting differences that are essential from the business 

perspective. 

2) Introducing a general annual model without any loadings. In this context 

annual model means that the calculations are performed annually only at the 

end of an insurance year.12 

3) Introducing a general annual expense-loaded model. 

4) Highlighting some extensions to annual expense-loaded model. 

5) Discussing changes in sums and premiums 

6) Discussing issues related to monthly expense-loaded models. In this model 

the calculations are performed monthly at the end of an insurance month. 

7) Looking at issues related to performing calculations at the end of a calendar 

month. 

8) Discussing sum issues related to approximations 

 

Finally this paper will provide a short summary of the results. 

 

                                                 
12 In this paper, by "insurance year" I mean the one-year-long time period starting the same month and day as the 

policy becomes effective. By "insurance month" I mean any one-month-long time period starting the same day 

as the policy becomes effective. If the month does not have that day, the last day of the month is chosen. 
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4 DIFFERENCES BETWEEN UNIVERSAL LIFE AND CON-
VENTIONAL PRODUCTS 

4.1 General 

 

There are some essential differences between universal life and conventional 

products that are relevant for the purpose of this paper: 

4.2 Reserve calculation formulas 

In conventional policies the reserves can be calculated using a small amount of 

data. Some information on the policy is needed, like information on the 

insured, on sum insured, policy period left and future payments. 

 

In universal life policies the reserves are calculated using the information of the 

previous reserve value and the change of reserve is calculated using for 

example information on insured and sum insured. All changes to reserves have 

to be stored, and this requires computer and storage capacity. 

4.3 Payment schedule flexibility 

In conventional products the reserves are calculated assuming that the 

payments have been paid exactly on their due dates. When calculating the 

liabilities, unearned premiums and prepayments have to be taken into account 

separately. In universal life product the paid payments are not considered to be 

unearned premiums when they have been allocated to savings, but in some 

cases premiums. 

 

If the universal life formulas would be used for conventional products, then 

one option is that payments are added to reserves not when paid but rather on 

their due dates. This means that unearned premiums and prepayments have to 

be analyzed separately. 

 

As in pure universal life products the policyholder is not so tightly committed 

to the payments, so it is common to define separate penalty loadings in case the 

policyholder does not meet the level of the original payment schedule. 
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4.4 Investment flexibility 

In universal life products it is possible for the policyholder to invest in several 

investment instruments. In this case the reserve is divided into several accounts 

and the accounts keep records on the units invested into funds. This type of 

policy is often called unit-linked policy.13 In this method, the investment risk is 

borne by the policyholder rather than the insurance undertaking. 

  

4.5 Calculation of reserves 

In the case of universal life products the reserves are calculated at least once a 

month, although for example the effects of payments and surrender values can 

be analyzed daily. In the case of conventional products, the calculations are 

performed when needed, for example for financial statements and customer 

information. 

 

                                                 
13 See e.g. Richards, pp. 1716 – 1724. In the USA this is often called "Variable universal life" (See e.g. Black et 

al. (See Black et al, p. 127) 
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5 CONVENTIONAL FORMULAS  

5.1 General  

 

In this paper I do not derive the conventional formulas because the derivations 

are readily available from the literature.14 

 

I shall provide proof and substantiate the effectiveness of some simple 

formulas that I will use towards the end of this chapter. 

 

5.2 Discrete model 

 

In a discrete model mortalities are calculated separately for each age.15 For each 

age x a number xl  is estimated. This number represents people alive at age x (it 

can be assumed e.g. that 6

0 10=l ). 

 

Let us define  

 

1+−= xxx lld  

x

x

x

x
x

l

l

l

d
q 11 +−==  

i
v

+
=

1

1
 

 

where 

 

x  is age  

xd  is number of death (at age x) 

xq  is mortality (at age x) 

i is technical interest rate 

v is discount coefficient 

                                                 
14 See e.g. Gerber, pp. 119 – 123, Neill pp. 38 – 71, Schmidt, pp. 123 –129 and Pesonen et al., pp. 54 – 78. 
15 Unless otherwise mentioned, for ages I have used the following notifications: 

- x the age at the beginning of the insurance year 

- x+t the age t whole years after x 

- x+t+m/12 the age m whole months ( 120  m ) from x+t (before x+t+1) 

- x+t+u the age time u ( 10  u ) from x+t  



 

 

9 

 

The commutation numbers are as follows: 

 
x

xx vlD =  


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=

'w
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ix DN  

x
x

xx
x

xx
x

xx D
i

q
DvqvllvdC 
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xl  may b e calculated from xq -numbers as follows: xxx lql −=+ )1(1 . 

 

The annuity will be 


x

nxx
nx

D

NN
ä +−

=:  

where 

 

n  is duration of annuity and 

w ' is last age of tables 

 

For a special model described later in chapter 8.2 we define as above but for 

interest rate i': 

'1

1
'

i
v

+
=  

( )xxx vlD '' =  


=

=

w

i

ix DN

1

''  


x

nxx
nx

D

NN
ä

'

''
' :

+−
=  

 

Define also monthly xN -numbers as follows: 


=

=

w

xi

ix DN
)12()12(

12

1
 

where )12(
iD  is monthly xD -number 
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5.3 Continuous model 

 

In a continuous model xl is defined using continuous force of mortality16: 

−

=

x

sds

x ell 0
0



 

 

From this we may calculate the xq -numbers as in discrete case. 
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


++

+

−+−

−

−

+ −=−=




−=−=

11

0 0

0

1

0
1111

0

01

x

x

s

x x

ss

x

s

x

s
dsdsds

ds

ds

x

x
x ee

el

el

l

l
q







 

 

Several mortality models can be used. 17 Later on I will assume that the 

functions have the required derivatives and integrals. 

 

In Finland the risk functions are continuous and force of mortality is defined by 

the Makeham model. 18 

 

By using the continuous model it is possible to calculate a risk for any period. 

We consider first the annual case, but later also the monthly case is discussed. 

 

By using an Euler summation we get annual representations between the 

continuous model and discrete model: 

 









+++−= ))1(ln(

12

1

2

1
xxxx iDNN   

 

xxx NiDM +−= )1ln(  

 

where xD  and xN are calculated as in the discrete case. These continuity 

correction formulas are used also in the Finnish technical bases.19 Neill writes 

that it is typical to use a shorter approximation: 

xxx DNN −=
2

1
20 

 

                                                 
16 See about force of mortality e.g. Gerber, pp. 16 – 17, pp. 40 – 46 and Bowers et al. pp. 55 – 58. 
17 See Gerber, p. 17 – 18, Bowers et al. pp. 77 – 79 and Pesonen et al. pp. 46 – 47. 
18 See Vakuutusmatemaatikon tutkintolautakunta, Yksilöllisen henkivakuutuksen laskuperusteet 1.3.1. 
19 Ibid. Yksilöllisen henkivakuutuksen vakuutusmaksujen laskukaavat 1.11 and see Neill (3.2.1, 3.2.8, 3.3.3) p. 

78, 81, 102 and Pesonen et al., pp. 66 – 67, 
20 Neill p. 78 
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The continuous examples that I will give later are based on the first formulas.  

 

I concentrate on the discrete model and describe separately the behavior of the 

continuous model. Note that a bar above the basic symbol denotes continuous 

actuarial functions. 

 

5.4 Accumulation and discount factors 

 

In this paper I use terms "accumulation factor" and "discount factor" also for 

cases where not only the interest but also mortality is taken into account. 

 

The accumulation factor including effect of interest and mortality can be 

written as follows:  
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The results is found as follows:  
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Sometimes also the respective discount factor is needed. It is equal to  

i

q

i

i
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In the continuous case the discount factor may also be expressed as follows:  






+

+

−

−

+−

−

−

+


+

=

+

+
=

1

1

0

0

1

1

)1(

)1(

)1(
0

0

1

x

x

s

x

s

x

s
ds

ds

x

ds

x

x

x e
i

eil

eil

D

D






 

 



12 

 

6 GENERAL CONVENTIONAL MODEL 

6.1 Premium 

Let us consider the following general premium model:  

 x
wx

kx
S

a

A
B =

(*): 
:

 

where 

 

(*):wxA   = net single premium coefficient depending on the product (*) in 

question 

xS     = sum insured at time x for a period of n years 

a      = 1, for single premium 

          = kxä :  for annual premiums for a period of k years 

 

In this chapter 6 I assume that xS and 
 

kxB :  are constants through insurance and 

payment periods. In the examples below I have used for each period the value in 

the beginning of the period. So, txtx SS +++ =1  and  
 

ktx

 

ktx BB :1:1 +−++ = . As I later in 

chapter 11.1 will describe, the initial values will be used also in cases when the 

policy period is apportioned among periods where sum insured and premium are 

constants.21 Then, for each such period these formulas will be valid. 

 

6.2 Reserve 

 

Reserve for sum insured txS +  at time x+t in this case would be: 

 

 tktxtktxtxwtxtx äBSAV
−+−++++ −=

::: (*) . 

6.3 Discrete models 

 
6.3.1 Pure endowment single premium 

In this example the reserve for sum insured txS +  at moment x+t is equal to 

 

tx
tx

w
tx S

D

D
V +

+
+ = .22 

 

 

                                                 
21 See chapter 11.1 
22 See Schmidt, example 5.4.5 (5), p. 126. 
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After one year the reserve is equal to 
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The result is natural because it shows that the reserve is the previous reserve 

corrected by interest increase and mortality compensation.23 

 

Assuming first that mortality 0=+txq and then that guaranteed interest i = 0, we 

obtain the following results: 

1) tx
tx

V
q

i
+

+


−1

 is the effect of guaranteed interest increase 

 

2) tx
tx

tx V
q

q
+

+

+ 
−1

 is the compensation due to mortality 

 

 
6.3.2 Term life single premium 

In this example the reserve for sum txS +  at moment x+t is equal to 
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So, at the end of the next year the reserve formulas are as follows: 
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23 I have earlier mentioned that recursive formulas can be used to describe the methods used in the universal life 

product. This is an example of it. In practical solutions recursive formulas can always be found, see Koller, pp. 

49 – 51. 
24 See Gerber A.4.5, p. 122 and Schmidt, example 5.4.4 (2), p. 126. 
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From the second last equation we may see that the policy is entitled to 

compensation as in the pure endowment case and risk is charged from the whole 

risk sum. 

 

However, the last equation shows that if we consider the net effect of the 

mortality, then there is no mortality compensation but only the positive risk sum 

is charged and )(
1

txtx
tx

tx VS
q

q
++

+

+ −
−

 is the risk charge at the end of the year. 
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In this case the reserve formula is as follows: 
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So, in this formula the discounted mortality charge is decreased from the initial 

reserve before the interest and compensation calculations. The result is the same, 

but in addition both the mortality charge and the interest yield are smaller. 

 

When deriving the formulas I mostly use the mortality at the end of a year, 

because the denominators of interest and mortality are the same and so the 

derivation of the formulas is easier. Also, as I will describe later in chapter 13.3, 

in some cases it is wise to start the calculation of monthly charges from the 

values at the end of an insurance year. 
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6.3.3 Annuity 

In this example the reserve for sum txE +  at moment x+t is equal to 
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Because the annuity is paid in advance, interest and mortality compensation are 

added to the difference of the reserve and the annuity. 

 
6.3.4 Effect of premiums 

In this example we analyze the effect of payment tktxB −+ :  for the reserve. If 

(*):wtxA +  is any single net premium coefficient at moment x+t and tktxB −+ :  

annual payment paid for k-t years, then reserve at moment x+t is equal to 
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25 See Gerber A.3.6, p. 121 and Schmidt, example 5.4.5 (2), p. 126. 
 



16 

 

Here   tktx
tx

tx
tktx

tx
tktx B

q

q
B

q

i
B −+

+

+
−+

+
−+ 

−
+

−
+ :::

11
 is the effect of the payment. 

Because the premium is paid in advance, also interest and mortality 

compensation are added to the reserve. 

 

As we may see, the effect of the payments is similar to the effect of annuities. 

Payments are just positive whereas annuities negative cash flow. 

 

 
6.3.5 Deferred annuity 

In this example the annuity has been deferred by m years. Then the reserve for 

sum txE +  at moment x+t is equal to 
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From the results of pure endowment case we realize that during deferred period 

the reserve is equal to 

tx
tx

tx
tx

tx
txtx

V
q

q
V

q

i
VV +

+

+
+

+
+++


−

+
−

+=
111

. 

 

The result is clear. The deferred period acts like a paid-up policy. 

 

 
6.3.6 Summary of general discrete model 

The reserve may be calculated by the following formula:26 

 

 

 

The last term can be positive or negative depending on whether the risk sum is 

positive or negative. 

 

                                                 
26 This general result without division to the components and slightly differently expressed has been proofed also 

in the literature. The proofs do not directly show the relationship with the commutation numbers. See e.g. Neill 

(4.4.1), p. 124 and Bowers et al. (8.3.10) p. 235, Schmidt ((5.5.9) p. 124 and Gerber (6.3.4) p. 61. 
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The different components are as follows: 

- annual premium tktxB −+ :  

- annual annuity  txE +  

- interest    )(
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It is also possible to decrease the mortality charge in the beginning of the year. 

The formulas for this were given in chapter 6.3.2. 

6.4 Continuous models27 

 
6.4.1 General 

 

If the continuous model does not have continuity correction, then the formulas 

defined in the discrete model apply. Below I describe the effects of the 

continuity correction as defined in chapter 5.3. 

 

 
6.4.2 Continuous annuity 
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Thus using the results from discrete model we get a value at the end of the 

year: 
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27 Some formulas have been revised after first edition of the document. 
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Compared to the discrete model there is continuity correction in the beginning 

of the year equal to 
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Reserves are corrected each time the annuity is paid out. The correction 

increases the reserve as described below in the summary. 

 

 
6.4.3 Continuous payments 

 

Similar to the calculation for continuous annuities, the payment correction in the 

beginning of the year is equal to  
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Reserves are corrected each time a payment has been collected. The correction 

decreases the reserve as described below in the summary. 
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6.4.4 Continuous term life  

In this example the reserve for sum txS +  at moment x+t is equal to 
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Using the results from annuity and the discrete model we obtain: 
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So, the continuity correction of the mortality in the beginning of the year is 

equal to 
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Here we may use the results of the proof of the continuous annuity case and find 

out that at the end of the year this is equal to 
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This correction corrects the reserves each time the mortality is charged. 

 

If the discrete mortality value is calculated in the beginning of the year, the 

discounted formula is equal to 
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6.4.5 Summary of general continuous model 

 

In the continuous model it is possible to use continuity corrections for the 

discrete values. They act like loadings, which will be discussed more thoroughly 

in the next chapter. For example payment corrections are taken into account 

only when payments are paid.  

 

The payment and continuity correction related to it should be separate, because 

if the actual payment is not shown to the policyholder, then the policyholder 

cannot be sure that the payment has been taken into account. This is the same 

also in annuity case. 

 

The correction related to annuities and payments for interest rate 3,5 % is shown 

in picture 6.1. The correction is almost constant until age 40 and then rises to 

13,8 % until age 90. 
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Continuity correction of payments and annuities

 
Picture 6.1 Continuity correction effect of payments and annuities (%) for interest rate 

3,5 % at the end of the year 

 

Mortality charges are charged each year. The continuity correction of the 

mortality can be added to the value of the discrete model because it has 

originally defined to be a component of the mortality. The correction does not 

vary great deal, especially if charged at the end of the year as shown in picture 

6.2. During the same period as above the correction ranges from 1,71 % to 1,80 

% with lowest value at age 56. 
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Continuity correction of mortality

 
Picture 6.2 Continuity correction effect of mortality (%) for interest rate 3,5 % if 

charged at the end of the year 
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If the charges were charged in the beginning of the year, then the discount factor 

should have been taken into account. The factor decreases the value the more the 

older a person is. 

 

One option is to add also the payment and annuity correction to this value. 

However, it can be problematic if the mortality charge becomes positive due to 

the correction. 

 

As a summary, the reserve may be calculated by 
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where 
C

txB +  is the correction related to payments 
C

txE +  is the correction related to annuities 
C

txQ +  is the correction related to mortality charges 

the other notations are the same as in discrete model 

 

The second last term can be positive or negative depending on whether there 

exists a positive or a negative risk sum. 

 

The different correction components are as follows: 

- payment correction 
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- mortality correction  
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7 GENERAL EXPENSE-LOADED PREMIUM MODEL 

7.1 Premium 

Let us consider the following general expense-loaded premium model. The 

model is the one proposed by Gerber.28 

 

 x
wxwx

kx
S

a

äA
B 

−

++
=

)1(

(*) :1: 
: 


 

where 

 

(*):wxA   = net single premium coefficient depending on the product in 

concern 

xS     = sum insured at time x for a period of n years 

1     = loading parameter in relation to the sum insured, charged in the 

beginning of the policy period 

       = loading parameter in relation to the sum insured, charged 

annually 

      = loading parameter in relation to each gross payment, charged 

during the payment period 

 

a      = 1, for single premium 

          = kxä :  for annual premiums 

 

In this chapter 7 we still assume as we did in chapter 6.1 that xS and 
 

kxB :  are 

constants through insurance and payment periods. So, xtx SS =+ and 

 
 
:

 
: kxtktx

BB =
−+

. Later in chapter 11.1 it is found that this restriction is not 

relevant. 

 

7.2 Reserve 

 

Gross reserve to sum insured txS +  is 

 

( )   txwtxtktxtktxtxwtxtx SääBSAV ++−+−++++ +−−= :::: 1(*)  . 

 

                                                 
28 See Gerber, p. 104. 
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In this model 1 -loading is charged as a single charge in the beginning of the 

policy period and  -loading is charged annually. 

 

From the reserve formula for time x+t+1 we obtain 
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+−−=











 

The different components will be analyzed below. 
 

7.3 Costs charged in the beginning of the policy period 

 

From the premium formula we obtain the following result: 

 

  xwxtxwxkxkx
SäSAäB ++=− + )((*))1( :1::

 
:

  

 

Calculating the reserve as t = 0 we obtain 

 

( )   xwxkxkxxwxx SääBSAV +−−= :::: 1(*)   

 

Replacing the result from the premium formula to this we obtain 

 

x

xwxxwxtxwxxwxx

S

SäSäSASAV

−=

++−−= +

1

::1:: )((*)(*)




 

 

So, this means that in the beginning of the policy period, an 1 -loading equal to 

xS− 1  is charged. 
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7.4 Costs charged from each payment 

 

The reserve formula for 
1++tx

V  shows that the effect of each payment is equal to 

tktxB −+− :  and is charged at the same time as the payment. So, at the end of the 

year the effect is equal to tktx
tx
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B
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7.5 Costs charged during the insurance policy period 

 

The reserve formula for 
1++tx

V  shows also that the effect of  -loading is equal 

to txwtxwtx
Sää ++++
− )( ::1

  and is charged in the beginning of an insurance year. 

So, at the end of the year the effect is equal to tx
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7.6 Summary of expense-loaded premium model 

 

The reserve may be calculated by 
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The last term can be positive or negative depending on whether there exists a 

positive or a negative risk sum. 

 

The different components are: 

- annual premium  tktxB −+ :  

- annual annuity   txE +  

- initial costs   xS− 1  

- annual administration costs  txS +−  

- premium related costs  tktxB −+− :  
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- interest     
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The values in the beginning of the year are derived in a corresponding manner. 
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8 EXTENSIONS TO GENERAL EXPENSE-LOADED 
PREMIUM MODEL 

8.1 Modified premium related costs 

 

Let us consider the following expense-loaded premium model:  

 

 x
wxwx

kx
S

a

äA
B 

−−

++
=

2

:1: 
: )1(

(*)




 

 

The model is the same as the previously-mentioned general expense-loaded 

premium model, with the addition of the 2 -loading. The formula can now be 

written as follows: 

 

 x
wxwx

kx
S

a
a

äA
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−−

++
=

)1(

(*)

2

:1: 
: 


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So, the annual expense at time x+t is equal to tktxB
a

−+− :
2

 which means that 

tktxB −+ :2  is apportioned for the whole payment period.29 The loading acts in 

the same way as  -loading. 

8.2 Modified costs charged during the policy period 

 

I have seen also the following  -loading model been used: 

 x
wxwx

kx
S

a

äA
B 

+
= :: 

:

'(*) 
 

where wxä :'  has been calculated with other interest rate i’ than the other parts of 

the reserve. 

 

The reserve was defined to be: 

 

  txwtxtktxtktxtxwtxtx SääBSAV ++−+−++++ +−= :::: '(*)   

 

I have analyzed the above equation in the general expense-loaded premium 

model the case where only one interest rate was used. Taking into account those 

results we obtain the following reserve at time x+t+1: 

                                                 
29 Personally I would not propose to use this kind of loading unless there is a special penalty loading for the case 

where the payments are terminated before the end of the policy period.  
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Here for the part txwtx Sä ++ :'  interest rate i and for the rest - that is 

txwtx Sä ++ − )1'( :  - interest i' is applied. 

 

This formula may also be written as follows: 
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The first term is now the same as the effect of interest and mortality for the  -

loading in the general expense-loaded premium model, and the second term 

displays the difference to this loading. Let us now analyze the second term 

discounted to the beginning of the year30: 

txwtx Sä
i

ii
++ −

+

−
)1'(

1

'
:  

 

In the case where i' < i, the second term is negative. As an example, picture 8.1 

shows Estonian mortality table 1997 with i = 3 % and i' = 2 % being used. 

 

 
Picture 8.1. Effect of gamma loading in the case where the technical interest rate used 

for gamma is lower than those applied for the rest of the reserve 

                                                 
30 If this is not discounted, then the curve is not so regular. 
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In the case where i > i', the second term is positive. As an example, picture 8.2 

shows the Estonian mortality table 1997 with i = 3 % and i' = 4 % being used. 

 

 
Picture 8.2. Effect of gamma loading in case the used technical interest rate for gamma 

is bigger than those applied for the rest of the reserve 

 

 

I have chosen this as an example because it shows clearly that sometimes it is 

not easy to define and name the components of the premium. However, because 

of transparency requirements, the charge components should be shown to the 

customer. Below I consider some alternatives: 

 

Let us first assume that i' < i.31 

 

What type of loading is this? 

- Should it be  -loading because it is related to it? In this case the  -loading is 

maybe not the same as in the price list because normally only the loading 

percentage is given in the price list and the effect of the interest is not clearly 

shown. Then there would be one component called simply "Gamma loading". 

- Should it reduce the interest yield because it is caused by the lower interest 

rate? In this case the interest yield would sometimes be negative.  

- Should it be some other loading? In this case there might be a problem if it has 

not been mentioned in the price list. However, the interest rate and formulas 

used have been mentioned in the technical bases. So, maybe it should simply be 

called "Gamma change". 

 

                                                 
31 I have seen this model used, but personally I do not see any reason to use such a model. 



30 

Let us then assume that i' > i.32 

 

What type of loading is this? 

- Should it be  -loading because it is related to it? This would be one option to 

call the net value of  -loading simply "Gamma loading". 

- Should it be discount of -loading because it is related to it? This would be 

attractive to the customer. There would be two components: "Gamma" and 

"Gamma discount". 

- Should it increase the interest yield because it is caused by the higher interest 

rate? This could be one option, but it is difficult to describe the customer how 

the interest yield has been calculated. 

 

I do not provide final answers, but the management of the undertaking should 

agree upon the name of the loading. 
 

8.3 Loading for premiums paid several times a year  

Let us denote by 
)(

:

m

kx
B a premium paid m times a year whose annual premium 

would be equal to 
 
:kx

B  (m = 2, 3, 4, 6, 12). 

 

If commutation numbers on monthly level are already available, it is possible to 

define the premium for m months by using annuities calculated for m months. 

The formulas are the same as in annual case except that instead of annual values, 

monthly values are used. 

 

Sometimes the premium paid m times a year is based on annual commutation 

numbers. This approximation formula will be discussed in chapter 13.5. 

 

However, quite often the premium paid m times a year is defined as follows: 




)1(

 
:)(

: m
kxm

kx m

B
B +=  

 

where  

m       = loading coefficient related to the premium in case the premium is paid 

m times a year 

 

Turning this around: The annual premium from the monthly premium is 

 
)(

:
 
: 1

m

kx
m

kx
B

m
B 

+
=


. 

 

                                                 
32 This model could be justified if the sum insured does not increase during the insurance period, which means 

that also  -loading does not increase but the costs will increase. 
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The approximate formula for  -loading is i
m

m
m 



−
=

2

1
 .33 However, often more 

prudent loading formulas are used. 

 

It is possible to argument both that  -loading should be charged before 

charging  -loading and that  -loading should be charged before charging  -

loading. I have used the latter alternative.34  

 

In this case the annual components are as follows: 

- annual premium: 
 
:kx

B  

- annual  -loading  
)(

:
 
: 1

m

kx
m

m
kxm BmB 

+
−=−




  

 

The  -loading is charged because the undertaking looses some interest yield 

because not all of the money comes already in the beginning of the year. Taken 

this into account, I shall consider in chapter 13.5 how  -loading should be taken 

into account in monthly calculations. 

 

                                                 
33 See Neill (3.5.5) p. 88 
34 See also Koskinen et al. chapters 1.2 and 1.3 p. 102 where similar approach has been taken. This describes the 

performance analysis used in Finland. 
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9 EXAMPLES FROM FINNISH INDUSTRY PRACTICE  

9.1 Loadings related to risk premiums35 

 

In Finland the industry practice has been that term life is calculated as follows: 



( )

x

wx

tx

wtx

kx S
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ä
D

MM

B 
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+
−

+

= +

+

)1(

1 :

 

:




36 

 

If we replace here   with   and  with  , we find the Gerber's general 

expense-loaded model described above with additional  -loading.  

 

The amount of  -loading is found by multiplying the result given in chapter 

5.4. by   as follows:  
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q
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9.2 Loadings related to payments 

 

In Finland the payment related loadings for continuous payments are  -loading 

as described in chapter 9.1 and  -loading as described in chapter 8.3.  

 

In addition to this the continuous premium is divided by 1,025.37 This is 

approximately 045,1  (=1,0223) which means that the interest is charged for 

half of the year. This is not charged from single payments. My proposal is that 

this is taken into account in the  -loading. However,  -loading is not charged 

from annual payments. So, I would call the component a "payment type 

correction". See also chapter 13.5 below. 

                                                 
35 Formulas have been revised after first edition of the document. 
36 See Vakuutusmatemaatikon tutkintolautakunta, Yksilöllisen henkivakuutuksen laskukaavat 2.2. - I have also 

seen in Estonia a technical bases where i+= 1 . Because the mortality in this case was discrete, i+1 could be 

interpreted as correction of mortality to the middle of the year and not as loading component (compare with 

continuation correction of mortality in chapter 6.4.4). 
37 See Vakuutusmatemaatikon tutkintolautakunta, Yksilöllisen henkivakuutuksen laskukaavat 1.6 (representing 

interest  rate 4,5 %). 
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9.3 Some sickness insurance policies in Finland 

 

As described in chapter 5.3, in Finland the risk functions are continuous and 

force of mortality38 is defined by Makeham model. In this case xD  has a 

derivative equal to )( xxD  +−  where )1ln( i+= and x is the force of 

mortality.39  

 

On the other hand some sickness and disability covers have been defined by the 

formula  
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:: )1,0(10)1((*)  , 

where   is the safety margin and a and b are product- and gender-specific 

parameters.40 So   is essential part of the risk function and is not considered as 

a separate component. 

 

By using Trapezoidal rule41 for the integration part we obtain: 
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Let us first analyze this term by term and denote the terms by a
txV + , b

txV + and 

c
txV +  respectively.  

 

For a
tx

tx

txa
tx

V
D

D
V +

++

+
++

−
11

 we obtain: 

                                                 
38 See about force of mortality e.g. Gerber, pp. 16 – 17, pp. 40 – 46. 
39 See Neill p. 191 and Pesonen et al. p. 55. 
40 See Vakuutusmatemaatikon tutkintolautakunta, Yksilöllisen henkivakuutuksen laskukaavat 1.12. Previously 

the power in the integral was 4 instead of 5 but the method shown here may be applied also in this case (see 

SHY, Yksilöllisen henkivakuutuksen vakuutusmaksujen laskukaavat 1.1.2). 
41 See about Trapezoidal rule e.g. Kreuszig, pp. 869 – 872. 
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For b
txV +  we obtain: 
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For c
txV +  we obtain: 
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Now we can see that the change of the reserve for a single premium will be as 

follows (assuming that 1=+txS ): 
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This shows that even for quite complicated functions it is possible to find 

solutions. The calculation of the change is actually much faster than calculating 

the net single premium because it does not have a sum over the policy period. 

 

Discounted value in the beginning of the year is 
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10 RISK PREMIUMS WITHOUT EFFECTS ON RESERVES 

There may be covers that do not have any effects on reserves annually. For 

example in Finnish industry practice, waiver of premium has been such a 

product. In this case, waiver of premiums should be treated as payment-related 

loading and charged each time the payment arrives. 
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11 SUM AND PREMIUM CHANGES 

11.1 General 

 

In the conventional products, the level premium in the beginning of a policy 

period is the premium defined above. 

 

In universal life products the loading structure can be more complicated and the 

only way to find a level premium can be to simulate the reserve changes and the 

level premium is found by iteration. In iteration the sum insured is given. 

Different methods can be used.42 

 

When the policy is changed, then the new sum insured and premium should be 

found so that the savings accrued does not change at the point as the change 

takes place.  

 

Above we have assumed that the formulas are valid during the whole insurance 

or payment period. Actually it is sufficient that they are valid through the entire 

calculation period (which can be shorter than a month). So, the calculation 

period should be divided into periods where the parameters are the same. When 

the value is changed at the end of the period, the initial value of the period 

should be used. 

 

11.2 Sum insured 

 

From the reserve formula we obtain the result that new sum new

txS +  defined by 

other changed parameters t, txV +  and 
new

tktx
B

−+ :
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11.3 Premium 

 

 

From the reserve formula we obtain the result that the new premium 
new

tktxB −+ :  

defined by other changed parameters t, txV +  and new
txS +  is 

                                                 
42 See e.g. Kreyszig, pp. 838 – 848. 
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11.4 Products with varying sum insured 

 

The above-described method can be used also for any product where the change 

of sum insured has been defined beforehand and a level premium is charged. 

Traditionally, products with decreasing sum insured have been sold. 

 

 

11.5 A case when the condition that the accrued savings are preserved is not fulfilled 

 
11.5.1 General remarks 

 

I described above that normally the savings accrued does not change at the point 

where the change takes place. I have, however, seen the general expense-loaded 

premium model as described in 7.1 so that 1 -loading is charged also each time 

the payment is increased. 
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11.5.2 New sum insured 

 

Let's define a change formula for such a case. The new sum consists from the 

sum insured of the old premium added by the sum insured of the payment 

increase (where the 1 -loading has been charged): 
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The final result is quite obvious. The charge of the 1 -loading is taken from the 

payment increase. 

 

The new sum insured is calculated each time the payment is increased. 
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11.5.3 Reserve 

In the universal life-formulas the annual 1 -loading of the change of sum 

insured is taken into account by charging annually )( 11 −++ − txtx SS . 

 

In order to preserve for the policyholder the earnings that the policyholder has 

earned, the negative reserve of each sum insured increase should be changed to 

0. This situation is illustrated in picture 11.1.  

 

 
 

Picture 11.1. Effect of 1 -loading charge when payment is increased related to the 

special case described in chapter 11 

 

In this example the original curve is followed as long as the reserve where the 

effect of payment has been taken into account is bigger than the original reserve 

curve. It may happen that there are several such negative periods valid at the 

same time. 

 

If 1 -loading had been charged, the reserve would be too low. This is the case 

when 



( )  01
)1(

:

:

:1:
:: −

−

++
−+=

−++++ tktx

kx

wxwx
wtxwtxtx ä

ä

äA
äAV 




  

which is equal to the following equations: 
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This result is quite obvious: The reserve is negative as long as the future 

payments without 1 -loading are smaller than the payments with loading in the 

beginning of the period. Let us call this period "negative period". 

 

 
11.5.4 Solutions 

11.5.4.1 Solution of the conventional model 

 

In the conventional model it is possible to define several cover elements, each 

including 

- the sum insured (first the sum insured and then the sum increase) 

- the payment (first the initial premium and then the premium increase) 

- the cover period for the cover 

- the payment period for the cover 

 

Using conventional techniques the reserve for each cover may be calculated 

quite easily. 

 

11.5.4.2 Solutions of universal life model 

 

In the universal life –model, calculating a reserve for each cover element as we 

do for the conventional model would result in a great deal of data, because each 

payment increase creates a new account for the policy and several account entry 

changes would be stored into the database for each account. Also creating 

summaries for the customer would be quite complex. 

 

Therefore the goal should be to find a model where the reserve is managed in 

one account only. 
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Below, I shall describe two models: 

- an approximation model. 

- exact model 

 

11.5.4.3 Approximation model 

 

In this model if 1t , the additional reserve at moment x+t is corrected by  
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where ),min( max

 ntn =  and max

n  depends on the years to maturity (n-t) and is 

analyzed by testing the length of the negative period as described in chapter 

11.5.3.  

 

I have made those tests on one portfolio and obtained the following results: 

 

n-t max

n  

1-19 1 

20-31 2 

32-38 3 

39-47 4 

48-49 5 

 

In practice this model means that the charged 1 -loading increments are added 

to the savings from those years defined above. 

 

The reserve increments are too large but are not bigger than what was charged 

from the customer as a whole.  

 

11.5.4.4 Exact model 

Let us denote t  by 
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In this model the additional reserve at moment x+t is corrected by 
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This model gives exact result on an annual basis but requires some additional 

coding. 
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If the customer decides not to continue to let the payments to be increased, then 

it is still possible that the effects of previous payment increases should be taken 

into account. The issue of how old payment increases should be taken into 

account may be evaluated from above mentioned approximation model. The 

negative period depends on the time to maturity and is always less or equal than 

five years in the analyzed portfolio. Therefore there is no need to analyze the 

older changes. 

 

 
11.5.5 Universal life model components 

 

Also in the negative period the calculated 1 -loading should be shown. 

 

The correction component could be called an 1 -compensation and it is the 

difference between current and previous correction terms. Because this is a 

correction term, it will not be added in the beginning of the year but at the end 

of the year. 

 

 
11.5.6 Summary of the case 

 

In this case I showed clearly that methods used in the conventional model 

should not be always followed in universal life model. In such a case the model 

would have greatly increased complexity and database size. 

 

We could see though that by using a different approach it was still possible to 

find an exact fit to the old model. 

 

It was also notable that though risk, loading and premium components could be 

charged in the beginning of the calculation period, some components that 

correct the calculated reserve should always be charged at the end of the year. 



44 

 

 

12 ZILLMERIZATION 

Zillmerization for acquisition costs is normally a given percentage of the 

premium.43 In the universal life model zillmerization has to be calculated at the 

end of each year and the change is taken into account as a zillmerization 

component. 

 

If the zillmerization percentage is equal to z and the zillmerization time is m 

years and the level premium is 
 
:kx

B , then each year the zillmerization change is 

equal to 


 
:1 kxtxtx B

m

z
ZZ −=− +++ . 

 

Here txZ +  is the zillmerization at age x+t. When the correction takes place, the 

zillmerization still left should be decreased from the reserve. 

 

If the zillmerization depends on the current payment and the payment changes 

from time to time, then the effect is equal to 
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43 See e.g. Gerber, pp. 106 – 107. 
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13 CALCULATION AT THE END OF AN INSURANCE MONTH 

13.1 General 

The methods defined above give exact values for the end of an insurance year. 

 

It is common that the insurance undertaking has defined the reserve formulas of 

the conventional products at least for each insurance anniversary. It is almost as 

common that some approximation formula is used between the insurance 

anniversaries. 

 

In this chapter 13 I shall concentrate on defining the exact values of the reserves. 

Mortality will be adjusted so that the reserve of the pure endowment will be 

preserved. With this mortality assumption and common mortality charges, the 

reserve is no longer preserved. Therefore I shall define different mortality 

functions for such cases.  

 

13.2 Mortality assumption at non-integer ages44 

 

13.2.1 General 

It is common that the mortality tables are defined for integer ages. In continuous 

models the mortalities for non-integer ages can be easily calculated. 

 

The mortality in non-integer ages has been defined in literature in different 

ways. The most common models are the following45: 

- uniform distribution of deaths (called also UDD or linearity of mortality) 

- constant force of mortality 

- Balducci model (called also hyperbolic model) 

 

I shall refer the above-mentioned models, but I also propose some modifications 

to them.  

 

Jones and Mereu have criticized the models: "While this has the advantage of 

simplicity, all three assumptions result in force of mortality and probability 

density functions with implausible discontinuities at integer ages."46 

 

                                                 
44 "Non-integer ages" has been used e.g. by Forfar (see Forfar, p. 1007). Sometimes this is also called "fractional 

ages". (See e.g. Bowers et al. p. 74 and Jones et al.) 
45 See Jones et al. family, p. 261 – 276, Jones et al. critique, p. 363 – 370, where the authors unify and extend the 

mentioned models and see Bowers et al. pp. 74 – 76 Gerber p. 21 – 22 and Forfar p. 1007. 
46 See Jones et al. critique, p. 363. 
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My point of view is the conversion. In conversion the insurance undertaking is 

bound to the promises it has given. I am not concerned about eventual 

discontinuities. I introduce here a new concept called "discount factor preserving 

method" and derive some mortality functions based on that concept. The 

proposed modifications that I mentioned above are based on this method. 

 

 

13.2.2 Discount factor preserving method 

One possible goal for the universal life model is that each year the reserve is 

exactly the same as if it were calculated by the conventional formulas. This 

means that accumulation and discount factors should be the same on an annual 

basis: 
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I shall later call this as "discount factor preserving method". 

 

If we assume that the interest rate is constant, then in accordance with the annual 

accumulation factor, the monthly accumulation factor is as follows: 
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So, the monthly interest rate is equal to 1112 −+ i . 

 

In principle it is possible to find a discount factor preserving method by 

adjusting the mortality, the interest rate or both. In practice I propose to adjust 

mortality because the interest rate has normally been fixed. 

Note that if interest is constant, then, because 
x

i
xlxD 









+
=

1

1
, discount factor 

preserving method preserves also xl -numbers at the end of the year.47 

 

13.2.3 Constant force of mortality 

 

Let us denote constant force of mortality by c  and the respective mortality by 
c

mxq 12/+ . 

 

In this case 1+xl  is equal to 

                                                 
47 Jones and Mereu write about the model that I have called linear Dx-model: "Strictly speaking, this is not an 

FAA... (fractional age assumption) ... because different age at death distributions arise for differenct choices of 

the interest rate." (See Jones et al. family, p. 262.) In discount factor preserving method the mortality may 

depend on the chosen interest rate, but normally not vice versa. There are some arguments against the discount 

factor preserving models that I shall consider in summary section. 
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Hence, the mortality is 
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This means that the same force of mortality for non-integer years may be used 

as for the integer years. In fact constant force of mortality implies also that the 

mortality is constant in non-integer years. Let us denote the constant mortality 

by c
xq . Its value depends on xq  and may be found as follows: 
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So, we obtain 

 

( ) x
c
x qq −=− 11

12
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This yields the following result: 

12 11 x
c
x qq −−=  

 

So, it is possible to choose whether to use constant mortality or force of 

mortality. 

 

13.2.4 Uniform distribution of deaths 

 

The unified mortality means that the deaths are uniformly distributed. In the 

UDD model the xl -numbers are interpolated as follows: 
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When dividing by xl , the following result is obtained: 
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which yields the result 
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However, this method does not preserve the discount factor. So, I shall define a 

modified UDD as such a mortality u
xq  that the mortality in month x+m is equal 

to 
u
x

u
x

qm

q

−12
 and preserves the discount factor. Then we obtain the following 

equation: 
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Here u
xq -number can be found by iteration. 48  

 

 

13.2.5 Balducci assumption 

 

The Balducci assumption49 assumes that the monthly mortality is determined by 
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Because of this it is sometimes called hyperbolic model. 

 

In this case we obtain 

                                                 
48 See about iteration e.g. Kreyszig, pp. 838 – 848. 
49 See Jones et al. family, p. 261 – 276, Jones et al. critique, p. 363 – 370, Gerber p. 21 – 22 and Forfar p. 1007. 



 

 

49 

 

( ) ( ) ( )

( )
x

x

xxx

x

xxxxx

x

xxx

x

xx

mx

x

q
m

l

ll
m

l

l

ll
m

lll

l

ll
m

l

l

m
l

m
l

l

l









−−=

−







−−

=

−+−−

=

−+

=

+







−

=

+

+++++

+

+

12
11

12
1

12121212
1

1

11111

12/

1

 

 

which is the Balducci assumption for one month. 

 

From this we obtain 
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which yields to the result 
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This mortality does not, however, preserve the discount factor. 

 

Let us now define modified Balducci assumption as such a mortality b
xq  that the 

mortality in month x+m is equal to 
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factor. Then we obtain the following equation: 
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In this case b
xq -number can be found by iteration. 50 

 

13.2.6 Continuous model 

 

In the continuous model case the monthly mortalities may be calculated from 

the mortality function. The same formulas as on annual level may be applied for 

the calculations at the end of an insurance month.  

 

In this case xl  is defined by using continuous force of mortality: 

                                                 
50 See about iteration e.g. Kreyszig, pp. 838 – 848. 
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Thus we obtain the desired result: 
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From this we may calculate the xq -numbers as in annual case. 
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13.2.7 Linear Dx-model 

 

Let us assume that xD  -numbers change linearly across non-integer years.51 This 

means that for all m = 0,…,11 
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51 See also the comment of Jones and Mereu mentioned in the footnote of chapter 13.4.3. 
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On the one hand, 
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On the other hand,  
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From this we obtain 
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13.2.8 Linear discount factor model 

 

Let us assume that the reserve of pure endowment changes linearly across non-

integer years. This means that the monthly change is equal to 
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and 
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Now for all m = 0,…,11 
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From this equation we obtain the following result: 
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13.2.9 Summary 

 

Above I have defined mortalities for several models. Traditional Balducci and 

UDD models are not discount factor preserving, but the others are. In picture 

13.1 the mortalities for a man between 60 and 62 years using the Finnish force 

of mortality and interest rate 3,5 % are shown.52 The scale is such that the 

deviations between constant force of mortality, modified UDD and modified 

Balducci models are not easily seen in picture 13.1 but are clear in picture 13.2.  
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Picture 13.1. Monthly mortalities with different mortality assumptions (deviations 

between constant force of mortality, UDD and modified Balducci models may not be 

seen from this picture, but from picture 13.2)53 
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Picture 13.2. Monthly mortalities with different mortality assumptions for constant 

force of mortality, modified UDD and modified Balducci models 

                                                 

52 )1000048,0(15,1 )72(02,0)5,94(055,0 +−+−−+
+ += hxhx

hx  - See Yksilöllisen henkivakuutuksen laskuperusteet 

SHV-tutkintoa varten 1.3.1 and Pesonen et al., p. 47. 
53 I have showed here the mortality curves instead of forces of mortality curves because the peak in the shift of 

years and scaling would have caused that the differences of the models would have not been clearly visible.  
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In conversion I propose to use one of the discount preserving models. In 

accordance with this it can be seen from picture 13.1 that the models that give 

smallest and largest values, i.e. the UDD and Balducci models, should not be 

used.  

 

The Balducci model has been sometimes criticized because the mortality is 

decreasing.54 So also the linear discount factor model, as shown in picture 13.1. 

This is for the reason that the shorter interest rate accumulation period is 

compensated for by lower mortality. 

 

Also Jones and Mereu criticize the models: "In specifying the FAA for each age, 

we wish to achieve a well-behaved force of mortality over all ages that is 

consistent with the life table being used."55 

  

As I mentioned, my point of view is the conversion. It should be considered 

what is cost-effective and what are the other goals. When choosing the model 

we may take into account the following factors: 

1) What universal life models does the undertaking support currently? – If the 

other products support e.g. UDD or Balducci model, then it is cost-effective to 

choose similar model also for the converted products. 

2) How large is the portfolio that should be converted? – For small portfolios it 

is not cost-effective to create new customized mortality models. 

3) What are the future plans related to the portfolio? – If the plan were to offer 

the possibility to change the policy from non-flexible to flexible policy, then a 

model that best suits for the flexible model would be preferred. 

4) Should the universal file formulas match exactly the conventional formulas? 

– If e.g. the conventional formulas have linear approximation during the year, 

then linear discount factor preserving model should be chosen. 

 

However, I admit that all models do not behave nicely if we look at them only 

from the mortality point of view. However, mortality charge is only one small 

element in payment and reserve structures and its importance should not be 

exaggerated. 

13.3 Charges at non-integer ages 

13.3.1 General 

In previous chapter I described some mortality assumptions for discount factors. 

In this chapter I consider what should be charged from the policyholder or, in 

other words, what should be charged from the reserves. By charge in this 

chapter I mean risk premiums, loadings and other components charged from the 

reserve. 

                                                 
54 See Gerber p. 22 and Forfar p. 1007. 
55 See Jones et al. critique, p. 363 – 370. 
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If we charge reserves monthly using the monthly interest rate and mortalities 

defined above, this does not preserve the reserves at the end of each insurance 

year. This model is possible but is an approximation that will be discussed in 

general in chapter 15. 

 

The goal in this chapter is that the charge would be the same as in the policy 

with conventional formulas in integer years. This goal is obvious if discount 

factor preserving method has been used. 

 

I consider later the following options: 

1) annual charge at the end of each policy year 

2) annual charge in the beginning of the insurance year 

3) level premium  

4) monthly charges resulting in linear reserve changes  

 

If the charge depends on the reserve, then it should be considered what is the 

monthly sum insured. It is also possible to let the sum insured change due to this 

reason monthly, but in some cases it is reasonable not to let the sum insured 

change. One argument for this approach is that in the old policy the sum insured 

does not change monthly.  

 

The monthly xD - and xN -numbers that I denote by 12/ktxD ++  and )12(
12/ktx

N
++

 

(k=0,…,12) are not the same as the annual xD - and xN -numbers that I denote 

by txD +  and txN +
56. Only in case of discount factor preserving model 

12/0+++ = txtx DD . Otherwise one should limit the calculations with xD - and xN -

numbers to one insurance year and define 12/121 ++++ = txtx DD  (actually there is 

one xD - and xN -number series for each age year). 

 

13.3.2 Annual charge at the end of an insurance year 

 

The annual charge can always be charged at the end of each policy year as 

defined in the previous chapters. This does not affect the reserve compared to 

the conventional methods. 

 

However, in this case there is no charge for the ongoing insurance year in case 

of surrender. So, I do not recommend this option. 

 

When deriving the other charge formulas, this is a good starting point. Let us 

denote this charge as A

tx
P

1++
.57 

                                                 
56 See also chapter 5.2. 
57 Because of this I have normally derived the charges to the end of the insurance year. In order to keep 

consistency with this principle I will derive also the monthly values to the end of the insurance month although 

in some cases the formulas would otherwise be simpler. 
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13.3.3 Annual charge in the beginning of an insurance year 

 

The charge A

tx
P

1++
 can be discounted to the beginning of an insurance year. This 

option can be chosen if the argument is that the policyholder has committed to 

pay at least annual charges. 

 

Let us denote this value by +

+

A

tx
P . In this case the value is 

A
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If the discount factor preserving model has been used, then we may use the 

annual mortalities: 

 

AtxA

tx

txA

tx

txA

txtxtxtx
P

i

q
P

D

D
P

D

D
P

111 1

11

12/0

1

+++++++


+

−
=== +

+

++

++

+++  

 

If the calculation period before the insurance year is not 12 but k (k=1,2,….,11) 

months, then use the following formula: 

A
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At the end of the policy period the formula is 

A
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13.3.4 Level premium 

 

In this case the premium is charged as a level premium during the year. The 

monthly level premium 12/mxP +  for any m = 0,…,11 is found by dividing the 

annual charge A

x
P

1+
 by the annuity.  
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In case of discount factor preserving model this is equal to the following: 
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Change of sum insured during the year changes also the monthly charge. The 

new payment is equal to 

 

)(
1)12(

12/12
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Of course, in the similar way as in annual calculations, instead of commutation 

numbers, summation can be used as follows: 
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The same formula can be applied for any k month period (k=1,2,…,11) before 

the end of an insurance year. For a k month period (k=1,2,…,11 and m<k) after 

the end of an insurance year use the following formula: 
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13.3.5 Monthly charge resulting in linear reserve changes 

 

If the linear discount factor preserving model has been used, then it is natural to 

require also that the reserves change linearly during the insurance year. 

 

Let us consider only the charge part of the reserve. The goal is to find for m = 

0,…,11 a charge 12/mtxP ++  such that the monthly change of reserve is equal to 

V . 

 

So, the charge at the end of the first month is A
tx tx

PVP
112

1
12/1 ++

==++ . 

 

Each month the reserve of the previous month equal to Vm − )1(  is corrected 

by interest rate and compensation. Thus, each month the following equation is 

valid: 
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Especially for mortality the following is valid: 
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This means that we may use the same monthly mortality functions if we 

multiply the sum insured A

tx
P

112

1

++
  by: 
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In table 13.1 there is an example based on the linear discount factor preserving 

model example presented in chapter 13.2.8. Premium is 10000,  -loading 10 %, 

premium multiplied by i+1  as presented in the footnote 34 of chapter 9.1 and 

sum insured 50000. As a result the reserve decreases by 29,86 each month. The 

mortality premium decrease is first 0,30 but 0,27 at the end of the year. Total 

risk charge for the year is 824,29 and the premium of the first month 824,29/12 

= 68,69. During the first year the risk premium decreases month by month, but 

later as the initial reserve is greater also the monthly premium increases. 

 

 
month premium (without 

 -loading) 

risk 

premium 

compensation interest reserve 

1 9000,00 -68,69 12,95 25,88 8970,14 

2 0,00 -68,40 12,74 25,79 8940,28 

3 0,00 -68,10 12,54 25,70 8910,41 

4 0,00 -67,81 12,33 25,62 8880,55 

5 0,00 -67,53 12,13 25,53 8850,69 

6 0,00 -67,24 11,93 25,44 8820,83 

7 0,00 -66,96 11,74 25,36 8790,97 

8 0,00 -66,68 11,54 25,27 8761,10 

9 0,00 -66,40 11,35 25,18 8731,24 

10 0,00 -66,12 11,16 25,10 8701,38 

11 0,00 -65,85 10,98 25,01 8671,52 

12 0,00 -65,58 10,79 24,93 8641,65 

 
Table 13.1. Monthly reserve change components in case the reserve changes linearly 

during the year 

 

For k month period (k=1,…,11) calibrate the annual A

x
P

1+
 to A

x
P

k 1

12

+
 . 
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13.4 Annuities paid several times a year 

In chapter 6.3.3 I described the annual annuity model. It was shown that the 

annuity behaves in the same way as premiums but with negative increments. I 

also discussed the monthly annuities related to the payments in chapter 13.3.4. 

 

However, quite often the monthly annuity-due is approximated by the following 

formulas: 

m
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These can be written as follows: 
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This means that the monthly annuity is calculated in accordance with chapter 

13.3.4 taking into account the coefficient defined above. 

 

13.5 Premiums paid several times a year 

 

13.5.1 General 

 

In chapter 8.3 I discussed the effects of payments if they are paid several times a 

year. I mentioned the case where monthly commutation numbers are available. 

 

I mentioned also a case of  -loading. However, the loading was charged from 

the annual payments.  

 

Let us now consider what is the joint effect of the payments and  -loading in 

monthly calculations. 

 

In the conventional formulas,  -loading is charged to cover the interest rate and 

the mortality charge effect from the period before the payment. Because the  -

loading coefficient is normally a constant, this always causes either a surplus or 

a loss. Let us assume that the  -loading structure has been defined prudently 

and that only a surplus is possible. (The calculations are the same but it is easier 

to describe the calculation results.) 

 

                                                 
58 See Neill, p. 74 – 75. See also Bowewrs et al. p. 151 where it has been proved that in the case of linearly 

changed discount factors, the relations are satisfied exactly. 
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By 
)(

:

m

kx
B  we denoted a premium paid m times a year whose annual premium 

would be equal to 
 
:kx

B  (m = 2, 3, 4, 6, 12): 
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In j'th month (j = 0,…,11) payment not yet collected is equal to 
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where INT means that the number is rounded down to the nearest integer. 

 

In order to obtain the same results as with annual payments, compensation and 

interest related to payments not yet collected have to be added to the reserve 

monthly. I call this  -correction. Some part of the payment is actual cost for the 

policyholder. I call this  -cost. 

 

The total  -cost of the year is the same as the compensation and interest but 

calculated each month (j=1,…,12) for 


m

Bj
mINT
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monthly  -correction by jc , then 
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In cases other than monthly payments, the payments do not arrive monthly but 

the charges should occur monthly. In order to manage this I propose to use a 

ledger, Let us call it an -ledger. From each payment the  -cost is charged 

immediately and the remainder is put into the -ledger. Each month the  -

correction is transferred from the ledger to the reserve. 

 

There are several strategies for calculating the monthly  -cost related to the 

payment. I have devised here three alternative loading strategies: 

1) Costs prioritizing method: No future  -costs are charged before the  -

corrections have been either charged or transferred to the ledger. 

2) Payment period method: The  -correction from months before next ordinary 

payment is transferred to the ledger before charging  -cost. 

3) Proportional method: Each month the same annual portion of the payment is 

charged as  -cost. 
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Sometimes the premium paid m times a year is approximated by annual 

commutation numbers as defined in the previous chapter 13.4.59 However, even 

these formulas can be transferred to the same format 




)1(

 
:)(

: m
kxm

kx m

B
B += , 

but in this case the definition of m  is more complicated. 

 

The examples presented in this chapter are based on the example presented in 

chapter 13.3.5. The assumption in the examples is that the payment is paid four 

times a year. The total  -cost of the year is 172,52. 

 

13.5.2 Costs prioritizing method 

 

In this method no future  -costs are charged before the  -corrections have been 

either charged or transferred to the ledger. From table 13.2 it is possible to see 

that the money transferred into and out from the ledger are equal. The money 

into the policy is the same as monthly  -correction jc . 

 
month premium (without 

 -loading) 

ledger transfer  -cost 

 

risk 

premium 

compensation 

and interest 

reserve 

out in 

1 2350,00 -100,00 29,12 0,00 -68,69 9,71 2220,14 

2 0,00 0,00 29,00 0,00 -68,40 9,54 2190,28 

3 0,00 0,00 28,87 0,00 -68,10 9,37 2160,41 

4 2350,00 -72,52 19,17 -27,48 -67,81 18,78 4380,55 

5 0,00 0,00 19,09 0,00 -67,53 18,58 4350,69 

6 0,00 0,00 19,00 0,00 -67,24 18,37 4320,83 

7 2350,00 0,00 9,46 -100,00 -66,96 27,63 6540,97 

8 0,00 0,00 9,42 0,00 -66,68 27,39 6511,10 

9 0,00 0,00 9,38 0,00 -66,40 27,15 6481,24 

10 2350,00 0,00 0,00 -100,00 -66,12 36,26 8701,38 

11 0,00 0,00 0,00 0,00 -65,85 35,99 8671,52 

12 0,00 0,00 0,00 0,00 -65,58 35,72 8641,65 

 
Table 13.2. Monthly reserve change components in the case of cost prioritizing method 

 

Compared to the results presented in table 13.1 reserves match each other in 

months 10 – 12. Also the change of reserve is equal (-29,86) between those 

months where no payment takes place in the latter month. 

 

                                                 
59 See Neill pp. 86 – 91 
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13.5.3 Payment period method 

In this method  -correction jc  from months before next ordinary payment is 

transferred to the ledger before charging  -cost. 

 

Compared to the example presented in table 13.2, in the payment period method 

the transferred money is limited to the  -correction to be collected before the 

next payment. This is clearly visible from table 13.3.  

 

 
month premium (without 

 -loading) 

ledger transfer  -cost 

 

risk 

premium 

compensation  

and interest 

reserve 

out in 

1 2350,00 -86,99 29,12 -13,01 -68,69 9,71 2220,14 

2 0,00 0,00 29,00 0,00 -68,40 9,54 2190,28 

3 0,00 0,00 28,87 0,00 -68,10 9,37 2160,41 

4 2350,00 -57,26 19,17 -42,74 -67,81 18,78 4380,55 

5 0,00 0,00 19,09 0,00 -67,53 18,58 4350,69 

6 0,00 0,00 19,00 0,00 -67,24 18,37 4320,83 

7 2350,00 -28,27 9,46 -71,73 -66,96 27,63 6540,97 

8 0,00 0,00 9,42 0,00 -66,68 27,39 6511,10 

9 0,00 0,00 9,38 0,00 -66,40 27,15 6481,24 

10 2350,00 0,00 0,00 -100,00 -66,12 36,26 8701,38 

11 0,00 0,00 0,00 0,00 -65,85 35,99 8671,52 

12 0,00 0,00 0,00 0,00 -65,58 35,72 8641,65 

 
Table 13.3. Monthly reserve change components in the case of payment period method 

 

13.5.4 Proportional method 

 

In this method each month the same annual portion of the payment is charged as 

the  -cost. The proportion is equal to 

 mkx
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where jc  is the monthly  -correction jc  

 

In the example shown in table 13.4 the  -cost coefficient is equal to (1-

172,52/400,00 = 0,5687). So, from each payment  -cost is equal to 0,5687*100 

= 56,87. From the annual payment the  -cost is 2,2 %. 
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month premium (without 

 -loading) 

ledger transfer  -cost 

 

risk 

premium 

compensation  

and interest 

reserve 

out in 

1 2350,00 -43,13 29,12 -56,87 -68,69 9,71 2220,14 

2 0,00 0,00 29,00 0,00 -68,40 9,54 2190,28 

3 0,00 0,00 28,87 0,00 -68,10 9,37 2160,41 

4 2350,00 -43,13 19,17 -56,87 -67,81 18,78 4380,55 

5 0,00 0,00 19,09 0,00 -67,53 18,58 4350,69 

6 0,00 0,00 19,00 0,00 -67,24 18,37 4320,83 

7 2350,00 -43,13 9,46 -56,87 -66,96 27,63 6540,97 

8 0,00 0,00 9,42 0,00 -66,68 27,39 6511,10 

9 0,00 0,00 9,38 0,00 -66,40 27,15 6481,24 

10 2350,00 -43,13 0,00 -56,87 -66,12 36,26 8701,38 

11 0,00 0,00 0,00 0,00 -65,85 35,99 8671,52 

12 0,00 0,00 0,00 0,00 -65,58 35,72 8641,65 

 
Table 13.4. Monthly reserve change components in the case of proportional method 

 

13.5.5 Summary 

 

The behavior of the ledger depends upon the chosen loading strategy, as can be 

seen in picture 13.3. 

-80

-60

-40

-20

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Proportional method Payment period method Cost prioritizing method

 
Picture 13.3.  -ledger in the beginning of the month and different loading strategies, as 

shown in tables 13.2. – 13.4 

 

Some remarks: 

1) When using the cost prioritizing and payment period methods the ledger is 

always non-negative. In the proportional method the ledger is sometimes 

negative. 
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2) In the payment period method the ledger is zero at the end of the payment 

period. 

3) The ledger is zero during the last payment period. 

 

From a bookkeeping point of view a positive ledger should be considered as 

prepayments and a negative ledger as unearned premium. 

 

As seen from picture 13.4,  -costs also depend upon the chosen loading strategy 
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Picture 13.4.  -costs in the beginning of the month and different loading strategies, as 

shown in tables 13,2. – 13.4 

 

Some remarks: 

1) In the proportional method the charged  -cost does not change from time to 

time. 

2) When using the cost prioritizing and payment period methods, the  -cost is 

at first lower and can be even 100 % at the end. 

 

All strategies give the same surrender value for the policyholder. If the 

policyholder can see all the change components, then the proportional strategy 

appears to be reasonable.  

 

However, in the proportional strategy the ledger is mostly negative. So, in case 

of surrender the cost charges should be corrected. From this point of view the 

payment period and cost prioritizing methods are better. Of these two methods 

the payment period method is the better because it is not possible to know when 

the policyholder wants to terminate the policy. 

 

I prefer the proportional strategy, but it is possible to argument for the other 

strategies also. 
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13.6 Sum and premium changes 

 

In chapter 13.3.1 I proposed that if the charge depends on the reserve, then the 

sum insured should not be allowed to change monthly. 

 

However, it should be possible to let the sum insured be changed case by case. 

For example, the policyholder may ask that the policy be transferred to a paid-

up policy or that the sum insured be increased. 

 

If the discount factor preserving method has been used, then the change 

formulas defined in chapters 11.2 and 11.3 may be applied. The annuity-due 

should be calculated using the monthly chosen mortality in accordance with 

chapter 13.2. 

 

However, on the day of the change there may be need for additional reserve 

change due to changes of the risk charge defined in chapter 13.3. Let us denote 

the change by Cx+t. In this case the formulas in chapters 11.2 and 11.3 should be 

replaced by the following formulas: 
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13.7 Example of monthly universal life model 

 

In this chapter I resume the findings described above. I have chosen as an 

example the following endowment product: 

- life tables are given for integer years 

- the reserve has been linearly interpolated between the integer years 

-  -loading is charged from the sum insured and  -loading from each 

payment 

 

The reserve may be calculated by 
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where 
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The last term can be positive or negative depending on whether there exists a 

positive or a negative risk sum. 

 

The different components are as follows: 

- annual premium  tktxB −+ :  

- annual administration costs  12/mtxS ++−  

- premium related costs  12/mtxB ++−  

- interest     
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The values in the beginning of the month are derived in a corresponding 

manner. 
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14 CALCULATION AT THE END OF A CALENDAR MONTH 

14.1 General 

Because the closing date for accounting is at the end of a calendar month, there 

is the need to perform reserve calculation at the end of a calendar month. 

 

There are the following options: 

- Insurance month case: The calculation is performed regularly first from the 

end of the previous month to the insurance year date and then from that date to 

the end of the month. 

- Calendar month case: The calculation is performed regularly only at the end of 

the month 

14.2 Insurance month case 

 

In the insurance month case there are at least two options: 

- the value of the policy is considered to be at the end of the month the same 

as on the insurance month date 

- there is a formula for how to calculate the value at the end of the month 

 

Sometimes I have seen that the accuracy of the traditional formulas when 

calculating the reserves is one month. In that case it is natural to define that 

policy value is the value at the end of the month and no other calculations are 

needed. 

 

One option is to use linear approximation between two monthly values: 

 

30/ktxV ++   = )( 12/1 txtxtx VVkV ++++ −+  

 

where 12/1++txV  should be calculated without the premium if the due day of the 

payment coincides to the next month and  1;0k  represents the portion of the 

year passed.  

 

It is also possible to consider a general expense-loaded model with   and  -

loadings In such a case during the insurance year a possible linear 

approximation is as follows: 

 

30/ktxV ++  =  SBkVVkV txtxtx −−+−+ ++++  )1()( 12/1  
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14.3 Calendar month case 

In this case the calculation is performed only at the end of the month. This 

means that at the same time as the conversion to the new formulas takes place 

the policy value is changed to the end of the month. 

 

The new value can be found by using the approximation methods defined in 

chapter 15 or by some other formula, e.g. the linear approximation defined in 

chapter 14.2. Let us consider the effects of the linear approximation compared to 

the value on the insurance month date. 

 

Let us denote the reserve based on approximation method by 1V and based on 

insurance month end date by 2V  and k = 1,2,…,30 is the date of the month. 

 

In this case we obtain the formulas for the first month after each payment: 
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So, the difference is equal to 

1V - 2V  =  ))1((
12

30/
12/1 txtxtxtx SBVV

k
+++++ −−−−   

 

Let us consider as an example an endowment policy for 40-year-old man with 

maturity age 61. In picture 14.1 the reserve has been calculated for the ages 

between 50 and 51 assuming that the payments are paid annually. 
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Picture 14.1. Correction of linear approximation at the end of an insurance year 



68 

 

It can be seen that the linear estimation gives in this example reserves that are 

larger than the actual ones, and this estimation is corrected at the end of the 

payment period, in this example annually.  

 

The results are also shown in table 12.1. Each column represents the day of the 

month of the payment. 

 
                                                           Day 

Reserve 1 2 3 4 5  25 26 27 28 29 30 

-100 -1,65 -3,29 -4,94 -6,58 -8,23 ... -41,14 -42,79 -44,43 -46,08 -47,73 0,00 

4000 -1,38 -2,76 -4,15 -5,53 -6,91 ... -34,55 -35,94 -37,32 -38,70 -40,08 0,00 

7000 -1,12 -2,25 -3,37 -4,49 -5,62 ... -28,09 -29,21 -30,33 -31,46 -32,58 0,00 

11000 -0,86 -1,73 -2,59 -3,45 -4,32 ... -21,58 -22,44 -23,30 -24,16 -25,03 0,00 

15000 -0,59 -1,19 -1,78 -2,38 -2,97 ... -14,86 -15,45 -16,05 -16,64 -17,24 0,00 

19000 -0,31 -0,62 -0,93 -1,25 -1,56 ... -7,79 -8,10 -8,41 -8,73 -9,04 0,00 

23000 0,00 0,00 0,00 0,00 -0,01 ... -0,03 -0,03 -0,03 -0,03 -0,03 0,00 

27000 0,37 0,74 1,10 1,47 1,84 ... 9,21 9,57 9,94 10,31 10,68 0,00 

31000 0,81 1,61 2,42 3,22 4,03 ... 20,15 20,96 21,77 22,57 23,38 0,00 

36000 1,32 2,65 3,97 5,30 6,62 ... 33,10 34,42 35,75 37,07 38,39 0,00 

40000 1,89 3,77 5,66 7,54 9,43 ... 47,14 49,03 50,91 52,80 54,68 0,00 

45000 2,48 4,95 7,43 9,90 12,38 ... 61,88 64,36 66,83 69,31 71,78 0,00 

50000 3,07 6,14 9,21 12,29 15,36 ... 76,79 79,86 82,93 86,01 89,08 0,00 

55000 3,70 7,41 11,11 14,82 18,52 ... 92,60 96,30 100,01 103,71 107,41 0,00 

61000 4,40 8,80 13,21 17,61 22,01 ... 110,06 114,46 118,86 123,26 127,67 0,00 

66000 5,18 10,37 15,55 20,73 25,92 ... 129,59 134,77 139,96 145,14 150,33 0,00 

72000 6,05 12,10 18,15 24,20 30,25 ... 151,23 157,28 163,33 169,38 175,43 0,00 

79000 7,00 13,99 20,99 27,99 34,99 ... 174,93 181,93 188,93 195,92 202,92 0,00 

85000 8,06 16,11 24,17 32,23 40,28 ... 201,42 209,48 217,54 225,60 233,65 0,00 

93000 9,26 18,53 27,79 37,06 46,32 ... 231,62 240,88 250,14 259,41 268,67 0,00 

100000             

 
Table 12.1. Correction at the end of the month if the reserve has been linearly 

interpolated 60 
 

The average deviation for the whole portfolio (one policy for each date) is 34,56 

with reserve average equal to 43715. So, the deviation is 0,079 % of the reserve. 

However, this is the case only in first month of the insurance year. The other 

months do not have deviations. So, the total deviation is 0,0066 %. 

 

Here the chosen portfolio is from 40 to 61. If a shorter policy period, say 40 to 

51, is chosen, then the values are slightly higher. In such case, deviation is 

55,28, reserve average 49154, deviation 0,1124 % of the reserve and in annual 

level 0,0094 %. From 50 to 61 the values are 37,56, 48469, 0,077 %, 0,0065 % 

respectively. 

                                                 
60 In order not to infringe the confidentiality of the customer, the values, except the first one, are rounded to 

1000. The actual value of the first reserve is not disclosed. 



 

 

69 

 

In accordance with the above-mentioned example, the deviations are not large. 

 

However, based on the above calculations it is likely that the effect is less than 

1/10000 of the reserves during the first year after the conversion. Change of 

calculation methods does not affect after this year. 

 

The total deviation is positive which means that the reserves should be 

increased. 

 

The deviation is not final in the sense that at the end of the policy period the 

values are corrected. However, because of mortality and interest rate the 

correction is not the same as in the beginning of the policy period. 

 

14.4 Ledger items 

 

If the actual values are used instead of the approximation values, then it is 

possible that we have to user ledger as we did for several times a year paid 

premiums in chapter 13.5. 
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15 APPROXIMATION METHODS 

15.1 General 

In some cases it is wise to consider the possibility of changing the technical 

bases of the product in order to get policies that can be managed in an easier 

manner. This has been mentioned earlier in chapter 2.2. When deriving formulas 

that give exactly the same values as with conventional formulas, the models do 

not always look nice from actuarial point of view, especially at the monthly 

level, as we have already seen. The goal with the approximation methods is to 

find those more attractive formulas. Another goal is that the formulas belong to 

the same family of formulas as the other universal life products. 

 

Here are some good candidates for the approximation: 

- change from insurance month reserves to calendar month reserves 

- management of several times a year paid premiums 

- monthly mortality assumption 

 

In this chapter 15 I consider the different options available for the leadership and 

management of the undertaking. 

15.2 Client promise 

I have discussed with several actuaries about the promise to the customer in case 

the approximation formula gives larger than actual values during a month, 

policy year or policy period. They have differing opinions: 

- Some actuaries say that because it is mentioned in the technical bases, it is a 

promise to the customer and changing the calculation method to the actual 

one would give the policyholder the right to terminate the policy and receive 

the unreduced surrender value.61 

- Some actuaries say that the promise is given only for the actual values and 

the actual formula can replace an approximate one, especially if the period is 

short (e.g. a year as in chapter 14.2). 

 

I do not offer a final answer to this question because it depends upon the policy 

of the local supervisory authority. However, I would prefer the second 

interpretation. This option is discussed later. 

 

The management of the insurance undertaking should finally agree on if the 

value would be at least the same as the value in the old policy 

- at the end of the policy period 

- at the end of each insurance year 

- at the end of each insurance month 

- all the time 

                                                 
61 See Insurance Companies Act 14:3. 
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15.3 Simulation 

 

The required corrections may be analyzed at the time of the conversion by 

simulating the reserves policy by policy and by both old and new formulas. 

 

The result of the simulation may be as follows (see also picture 14.1): 

- The simulation gives exactly the same value (model 1). This is the optimal 

situation. 

- The simulation with new formulas gives larger values than with old ones 

(model 2). 

- The simulation with new formulas gives smaller values than with old ones 

(model 3). 

Model 3 Model 2 Model 1

 
Picture 14.1. Simulation results where model 1 simulates the current formulas 

 

15.4 Increased benefits 

 

Model 2 is for the policyholder better than the current model. From the 

insurance undertaking point of view the result would be negative, but in any 

case, the policyholder receives the same benefits that the new policyholder 

would. 

 

The result may be acceptable because the model 2 represents the values that the 

customer would get with current formulas but with old parameters. So, in a way 

the conditions for old and new policyholders would be equal.  



72 

 

15.5 Iteration 

 

Model 3 may require that the policy value has to be adjusted so that the 

policyholder gets the same cover than he would get with old formulas. There are 

several options: 

- Each time when the reserve is needed, the reserve is corrected by the change 

between the old and new formulas. 

- At the time of the conversion the initial reserve will be increased so that the 

cover after the simulation would be the same as the sum insured using the 

old formulas (or some other criteria chosen by the management). 

- Instead of adding initial reserve, some parameters of the formulas are 

changed. This effects during the policy period. 

 

The desired result will be found by iteration. In iteration the sum insured is 

given and the required additional reserve or parameter is found by iteration. 

Model 2 Model 1

 
Picture 14.2. Example of old and new reserves 

 

After the change the progress curves of old and new reserves will be different as 

shown in picture 14.2. 

 

This change can be considered to be a change of accounting policies and 

therefore the change is booked as changes of balance sheet in accordance with 

IAS 8:22 – 24 and IASB 8 and applied retrospectively.62 

                                                 
62 See IASB 8 p. 3 – 5, 27 - 32   
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15.6 Rounding 

 

Though the formulas and methods described above would give exactly the same 

results, in practice some companies want to show policyholders rounded 

numbers. This may cause small deviations, but in practice during the whole 

policy period the deviations should be very small. If these rounding errors are 

corrected, the methods described in this chapter can be considered. 
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16 SUMMARY 

In this paper I have shown several methods for converting traditional life 

insurance policies into universal life policies. However, I have also proposed 

that common sense should be used and that it is sometimes reasonable for the 

insurance undertaking to expend resources for getting more unified calculation 

methods within the undertaking. In a long run this saves money. 

 

This paper concentrated on the problem of finding precisely-fitting conversion 

formulas. When designing simpler models understanding these models is vital. 

In the examples related to the continuous model, modified costs during the 

policy period and loadings charged from premiums paid several times a year 

show that it is not always easy to recognize the behavior of the products. If the 

model is based on incorrect assumptions, then the cash flow models required in 

the modern insurance industry are wrong, too. 

 

I have sometimes expressed my belief that a good actuary understands how the 

products behave but takes reasonable steps to simplify the model in order to get 

cost-effective systems. I encourage such simplifications. 

  

The example of premium increase changes showed that sometimes it is wise to 

change the structure of the old cover. In the chapter where I introduced 

approximation methods I also called for effectiveness. 

 

Hans U. Gerber writes about commutation numbers: "It may be … taken for 

granted that the days of the glory for the commutation numbers now belong to 

the past". His argument for this is the "advent of powerful computers" and 

"growing acceptance of models based on probability theory, which allows a 

more complete understanding of the essentials of the insurance". 63 

 

This is for the most part true. I still might see where in some cases use of 

conventional tools may be reasonable. For example, during the pension period 

the flexibility given by the universal life methods is not always needed. This is 

especially the case in statutory pension schemes. However, it is also the case 

that nowadays, during the pension period the investment risk is more and more 

often transferred to the policyholder by allowing unit-linked pensions. 

 

In this paper I have also derived new tools to manage conversions. I have 

derived new concepts such as "discount factor preserving method" and methods 

related to premiums paid several times a year. 

 

                                                 
63 See Gerber, p. 119. 
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This paper has provided tools for converting existing conventional products into 

universal life products. This has covered practice within the Finnish industry 

well. Also the discrete model has been covered and some more-difficult 

examples have been examined. The examples show clearly that if general 

actuarial principles are not followed, then the solution may be complicated but a 

solution may be found. Based on the guidelines given here it is straightforward 

to develop other formulas. 
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